Analysis of the Changes of Liner Service Networks by Using SNA

: Focused on Incheon Port

Park, Ki-Hyun · Lin, Mei-Shun · Ahn, Seung-Bum

Abstract

Incheon port attained two million TEU of container throughput between 2013 and 2014 as a third port in domestic container throughput. It opened a new port in Song-do, Incheon in June 2015 to prepare for the continuing increase in container throughput. Therefore, it has provided the platform for being the major container port domestically and internationally. As the role of the new port increases, the role and direction of the Incheon port liner service network attracts attention. This study analyzes the centrality of the Incheon port liner service network by using SNA (Social Network Analysis), which was introduced in the maritime economics area recently, focusing on the Incheon port liner service network. We recognize the degree centrality, closeness centrality, and betweenness centrality of each port and its effect on the Incheon port liner service network. The study showed that for Incheon port, the centrality of the Busan port in Korea, and the Hong Kong port, is high outside the country. This helps us determine that the hub of the Incheon port is neither Shanghai nor Singapore, which ranks first and second, respectively, on container throughput. It is also helps us to know that eastern China's ports have not played a role of the hub of the Incheon port until now because of the relatively low centrality of eastern China's ports.

Key words: Incheon Port, SNA(Social Network Analysis), Liner Service Network, Container Terminal
1. 서론

1. 연구의 배경 및 목적

우리나라는 동쪽, 서쪽, 남쪽으로 3면이 바다와 접해 있고, 지정학적으로 반도 국가이나 실질적으로는 섬나라와 같이 수입/수출의 대부분이 해상, 항공을 통해 이루어지고 있으며, 특히 대다수의 물동량이 해상을 통한 수입/수출에 의존하고 있다.

특히 수도권과 가장 근거리에 위치하고 있는 인천항은 1883년 근대적 개항을 한 이후로 수도권의 관문 역할을 하고 있으며 내항 및 북항에 벌크화물 부두 및 남항, 내항, 신항에 터미널을 확보하고 있다.

인천항은 2014년 기준으로 국내 벌크 화물 및 컨테이너 화물 처리 순위에서 3위를 유지하고 있으며, 특히 컨테이너 화물의 물동량 상장세는 평택항으로의 물동량유출로 인해 감소세를 보이는 벌크 화물 물동량에 비해 높은 성장세를 보이고 있다.

또한 인천항은 최근 신항 개장과 더불어 발전 가능성이 높아질 것으로 예상되며, 컨테이너 물동량, 컨테이너 처리능력 외에도 새로운 관점으로 인천항을 기항하고 있는 컨테이너 정기선 항로(항만 네트워크)에 대해서도 점차 중요도와 관심이 높아질 것으로 예상된다.

본 연구에서는 기존의 컨테이너 시장을 바라보는 시각에서 벗어나 항로(항만네트워크)를 중심으로 인천항의 트렌드를 분석하고자 하며 이를 통해 인천항 포트 세일즈 및 발전 전략 수립, 인천항 연구 등에 도움이 될 것으로 기대하고 있다.

2. 연구의 방법 및 구성

본 연구에서는 2008년 5월부터 2015년 6월까지 시계열 자료를 활용하여 인천항을 잇는 컨테이너 정기선 항로의 변화를 분석하기 위해 인천항 컨테이너 컨테이너 운송사 내부자료를 활용하여 인천항을 잇는 컨테이너 정기선 항로를 정리하고 이를 사회연결망 분석(Social Network Analysis) 방법 중 하나인 연결도 중심성(degree centrality), 인접 중심성(closeness centrality), 사이 중심성(betweenness centrality)을 활용하여 인천항 컨테이너 정기선 네트워크에서 중요한 위치를 차지하고 있는 항만의 변화 추이 및 인천항 컨테이너 정기선 네트워크의 전반적인 변화에 대해 살펴보고자 한다.

서론은 연구의 배경, 필요성, 방법 및 구성을 이루고 있다.

먼저, 인천항의 전반적인 현황으로 인천항 물동량, 컨테이너 터미널, 컨테이너 정기선 항로 등에 대해 설명하고자 한다. 이어서, 본 연구 수행을 위한 국내외 문헌고찰을 진행할 예정으로 인천항 관련 연구, 컨테이너 정기선 및 항로(항만네트워크) 관련 연구, 사회연결망 분석(Social Network Analysis) 관련 연구를 진행하고자 한다.

본 연구의 방법론적 접근을 위해 사회연결망 분석(Social Network Analysis)의 방법론 고찰을 진행할 예정이다. 인천항 컨테이너 정기선 항로의 시계열 자료를 활용하여 시각화 자료 및 각 중심성 centrality의 변화 추이 등을 확인하고자 한다. 결론에서는 본 연구의 중요성, 결과 및 시사점, 향후 연구 방향 등에 대해 논의하고자 한다.

II. 인천항 현황

1. 인천항 물동량 현황

사회연결망 분석을 활용한 컨테이너 정기선 항로 변화 분석

표 1. 전국 컨테이너화물 처리물동량

<table>
<thead>
<tr>
<th>구분</th>
<th>2014년</th>
<th>2013년</th>
<th>2012년</th>
<th>2011년</th>
<th>2010년</th>
<th>연평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>전국</td>
<td>24,798</td>
<td>23,469</td>
<td>22,550</td>
<td>21,611</td>
<td>19,369</td>
<td>6.4</td>
</tr>
<tr>
<td>1 부산항</td>
<td>18,683</td>
<td>17,686</td>
<td>17,046</td>
<td>16,185</td>
<td>14,194</td>
<td>7.1</td>
</tr>
<tr>
<td>2 광양항</td>
<td>2,338</td>
<td>2,285</td>
<td>2,154</td>
<td>2,085</td>
<td>2,088</td>
<td>2.9</td>
</tr>
<tr>
<td>3 인천항</td>
<td>2,335</td>
<td>2,161</td>
<td>1,982</td>
<td>1,998</td>
<td>1,903</td>
<td>5.3</td>
</tr>
<tr>
<td>4 평택·당진항</td>
<td>546</td>
<td>519</td>
<td>517</td>
<td>530</td>
<td>447</td>
<td>5.2</td>
</tr>
<tr>
<td>5 울산항</td>
<td>392</td>
<td>386</td>
<td>375</td>
<td>327</td>
<td>336</td>
<td>4.0</td>
</tr>
</tbody>
</table>

자료: 인천항 통계자료집, 2015, 전국항만 컨테이너화물 처리물동량 순위(2010년-2014년)

(표 2)는 전국 범화물 처리 물동량을 분석한 것으로 이를 통해 인천항의 범화물 현황을 살펴보면 2014년 기준 전국 범화물 처리 물동량 997,703천RT에서 광양항 21,013천RT, 울산항 186,319천RT에 이어 110,710천RT를 처리하여 3위를 유지하고 있으나, 평택·당진항으로의 범화물 이전으로 인해 범화물 물동량 성장세는 둔화되고 있으며, 이로 인해 인천항과 평택·당진항과의 범화물 유치 경쟁이 심화될 것으로 보인다.

반면 (표 1)을 통해 전국 컨테이너 처리 물동량을 확인한 결과 2014년도 전국 총 컨테이너 물동량 24,798천 TEU에서 부산항 18,683천 TEU, 광양항 2,338천 TEU에 이어 2,335천 TEU로 범화물 물동량 처리 순위와 동일한 국내 3위를 유지하고 있으나, 2010년부터 2014년까지의 연평균 증가율을 살펴보면 5.3%로 범화물과는 다르게 높은 성장세를 보이고 있음을 알 수 있으며, 이를 통해 인천항 컨테이너 시장의 향후 발전 잠망은 높을 것으로 예상된다.

2. 인천항 컨테이너 터미널 세부 현황

1) 사설현황

인천항은 현재 총 5개의 컨테이너 터미널이 운영 중이며 내항 및 남항에 CJ대한통운 컨테이너 터미널, 한진 컨테이너 터미널(인천신항 A터미널

표 2. 전국 범화물 처리물동량

<table>
<thead>
<tr>
<th>구분</th>
<th>2014년</th>
<th>2013년</th>
<th>2012년</th>
<th>2011년</th>
<th>2010년</th>
<th>연평균</th>
</tr>
</thead>
<tbody>
<tr>
<td>전국</td>
<td>997,703</td>
<td>967,538</td>
<td>967,888</td>
<td>962,904</td>
<td>890,354</td>
<td>2.9</td>
</tr>
<tr>
<td>1 광양항</td>
<td>216,013</td>
<td>203,299</td>
<td>203,332</td>
<td>189,344</td>
<td>176,808</td>
<td>5.1</td>
</tr>
<tr>
<td>2 울산항</td>
<td>186,319</td>
<td>185,662</td>
<td>191,726</td>
<td>189,029</td>
<td>167,012</td>
<td>2.8</td>
</tr>
<tr>
<td>3 인천항</td>
<td>110,710</td>
<td>109,518</td>
<td>110,762</td>
<td>114,894</td>
<td>118,423</td>
<td>-1.7</td>
</tr>
<tr>
<td>4 평택·당진항</td>
<td>108,494</td>
<td>101,127</td>
<td>92,798</td>
<td>88,076</td>
<td>69,993</td>
<td>11.6</td>
</tr>
</tbody>
</table>

자료: 인천항 통계자료집, 2015, 전국항만 범화물 처리물동량 순위(2010-2014년)
운영 예정, 신광인천컨테이너 터미널(인천항 B터미널 운영사로 15년 6월 인천항 개항)인 인천컨테이너 터미널(PSA-ICT), E1컨테이너 터미널이 있으며, 신항에 선광신컨테이너 터미널이 있다.

각 터미널이 공시하는 자료 및 터미널 운영사 내부자료를 종합하여 작성한 (표 3)를 통해 인천항의 컨테이너 터미널 시설, 장비능력을 확인하면 총 터미널 면적 1,321천 m²에 일시장치능력 106천TEU, 전면수심은 최소 -7M에서 최대 -16M를 보유하고 있으며 부두길이는 최소 221M에서 최대 800M임을 알 수 있다.

하지만 인천항 컨테이너 터미널에 보유하고 있는 최대 -16M 전면수심과 다르게 인천항 항로 수심은 -14M로서 준선을 통해 항로 수심 -16M을 확보하지 않는 한 인천항 컨테이너터미널에서 보유하고 있는 최대 전면수심 -16M을 보인다.

그리고 터미널별 장비를 합산해 보면 RMQC 총

표 4. 인천항 컨테이너 터미널별 물동량(2008년~2014년)

<table>
<thead>
<tr>
<th>구분</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>점유율</th>
</tr>
</thead>
<tbody>
<tr>
<td>A사</td>
<td>464,534</td>
<td>337,126</td>
<td>379,032</td>
<td>390,435</td>
<td>357,953</td>
<td>390,619</td>
<td>473,610</td>
<td>20%</td>
</tr>
<tr>
<td>B사</td>
<td>360,214</td>
<td>430,871</td>
<td>514,504</td>
<td>539,327</td>
<td>585,575</td>
<td>601,092</td>
<td>653,633</td>
<td>27%</td>
</tr>
<tr>
<td>C사</td>
<td>52,622</td>
<td>146,155</td>
<td>160,182</td>
<td>166,319</td>
<td>253,075</td>
<td>336,365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D사</td>
<td>427,662</td>
<td>375,130</td>
<td>406,492</td>
<td>434,745</td>
<td>400,493</td>
<td>427,026</td>
<td>382,282</td>
<td>14%</td>
</tr>
<tr>
<td>E사</td>
<td>137,443</td>
<td>104,990</td>
<td>105,736</td>
<td>127,222</td>
<td>125,027</td>
<td>124,942</td>
<td>142,402</td>
<td>16%</td>
</tr>
<tr>
<td>기타</td>
<td>313,509</td>
<td>277,264</td>
<td>350,814</td>
<td>345,868</td>
<td>346,488</td>
<td>364,043</td>
<td>366,377</td>
<td>6%</td>
</tr>
<tr>
<td>합계</td>
<td>1,703,362</td>
<td>1,578,005</td>
<td>1,902,733</td>
<td>1,997,779</td>
<td>1,981,855</td>
<td>2,160,797</td>
<td>2,334,939</td>
<td>100%</td>
</tr>
</tbody>
</table>

자료: 인천항 컨테이너 터미널 별 내부 물량 공유 자료 및 인천항 PORT-MIS 자료 교정리, 인천항 컨테이너 터미널별 물동량 및 배럴물동량(2008년~2014년), 기타는 배럴물동량으로 추정
표 5. 컨테이너 연도별, 품목별 물동량 현황(2009년-2014년)

<table>
<thead>
<tr>
<th>품목</th>
<th>2014년</th>
<th>2013년</th>
<th>2012년</th>
<th>2011년</th>
<th>2010년</th>
<th>2009년</th>
</tr>
</thead>
<tbody>
<tr>
<td>광적용 섬유 및 그제품</td>
<td>17,816,229</td>
<td>15,412,910</td>
<td>12,491,957</td>
<td>12,432,111</td>
<td>11,193,673</td>
<td>9,653,842</td>
</tr>
<tr>
<td>전기기기 및 그제품</td>
<td>5,747,127</td>
<td>5,281,868</td>
<td>4,725,586</td>
<td>4,553,721</td>
<td>4,297,013</td>
<td>2,986,683</td>
</tr>
<tr>
<td>기타</td>
<td>4,097,450</td>
<td>4,098,937</td>
<td>4,657,244</td>
<td>4,311,231</td>
<td>4,142,582</td>
<td>3,655,781</td>
</tr>
<tr>
<td>항공기, 선박, 그제품</td>
<td>3,113,943</td>
<td>2,547,198</td>
<td>2,233,879</td>
<td>1,961,450</td>
<td>2,285,621</td>
<td>1,761,786</td>
</tr>
<tr>
<td>차량 및 그제품</td>
<td>1,234,624</td>
<td>2,032,913</td>
<td>1,294,384</td>
<td>1,926,713</td>
<td>1,632,683</td>
<td>1,495,347</td>
</tr>
<tr>
<td>의약 및 진료특화</td>
<td>1,071,940</td>
<td>1,185,289</td>
<td>1,087,713</td>
<td>1,094,078</td>
<td>1,105,766</td>
<td>913,797</td>
</tr>
<tr>
<td>기계장치 및 그제품</td>
<td>945,853</td>
<td>961,554</td>
<td>992,274</td>
<td>1,217,828</td>
<td>1,401,794</td>
<td>1,308,984</td>
</tr>
<tr>
<td>철강 및 그제품</td>
<td>909,188</td>
<td>936,722</td>
<td>1,191,443</td>
<td>838,898</td>
<td>914,969</td>
<td>657,542</td>
</tr>
<tr>
<td>화학공업생산품</td>
<td>756,071</td>
<td>543,449</td>
<td>603,921</td>
<td>698,876</td>
<td>591,134</td>
<td>362,497</td>
</tr>
<tr>
<td>목재, 목단, 코르크</td>
<td>741,394</td>
<td>1,072,508</td>
<td>1,087,221</td>
<td>889,663</td>
<td>851,862</td>
<td>636,249</td>
</tr>
<tr>
<td>음료, 주류, 조제식품</td>
<td>700,999</td>
<td>445,301</td>
<td>485,827</td>
<td>609,543</td>
<td>506,771</td>
<td>406,729</td>
</tr>
<tr>
<td>프리스틱, 고품목제품</td>
<td>690,352</td>
<td>731,821</td>
<td>768,547</td>
<td>490,769</td>
<td>456,048</td>
<td>354,210</td>
</tr>
<tr>
<td>비철금속 및 그제품</td>
<td>512,892</td>
<td>361,299</td>
<td>450,439</td>
<td>544,292</td>
<td>452,100</td>
<td>413,543</td>
</tr>
<tr>
<td>시스템, 가구류</td>
<td>403,169</td>
<td>323,904</td>
<td>365,889</td>
<td>364,548</td>
<td>730,507</td>
<td>334,711</td>
</tr>
<tr>
<td>의약품, 산업용품 등</td>
<td>200,192</td>
<td>249,957</td>
<td>247,291</td>
<td>302,096</td>
<td>342,124</td>
<td>350,751</td>
</tr>
<tr>
<td>기타 광석 및 생산품</td>
<td>96,341</td>
<td>93,773</td>
<td>132,534</td>
<td>78,090</td>
<td>62,838</td>
<td>54,051</td>
</tr>
<tr>
<td>동, 식물성 유자류</td>
<td>68,872</td>
<td>21,481</td>
<td>31,989</td>
<td>18,495</td>
<td>30,470</td>
<td>22,565</td>
</tr>
<tr>
<td>고철</td>
<td>44,762</td>
<td>29,796</td>
<td>31,808</td>
<td>17,029</td>
<td>25,828</td>
<td>13,117</td>
</tr>
<tr>
<td>탑류</td>
<td>44,383</td>
<td>17,148</td>
<td>25,486</td>
<td>57,259</td>
<td>59,221</td>
<td>49,135</td>
</tr>
<tr>
<td>용류</td>
<td>43,849</td>
<td>60,485</td>
<td>44,787</td>
<td>45,619</td>
<td>69,324</td>
<td>61,356</td>
</tr>
<tr>
<td>석유 정제품</td>
<td>28,702</td>
<td>38,497</td>
<td>69,743</td>
<td>97,835</td>
<td>122,200</td>
<td>46,682</td>
</tr>
<tr>
<td>비료</td>
<td>22,953</td>
<td>24,371</td>
<td>23,337</td>
<td>14,533</td>
<td>12,349</td>
<td>10,012</td>
</tr>
<tr>
<td>양식</td>
<td>21,528</td>
<td>28,085</td>
<td>31,767</td>
<td>28,640</td>
<td>11,782</td>
<td>13,165</td>
</tr>
<tr>
<td>원목</td>
<td>20,872</td>
<td>16,507</td>
<td>20,850</td>
<td>22,424</td>
<td>13,940</td>
<td>34,010</td>
</tr>
<tr>
<td>철광석</td>
<td>16,524</td>
<td>23,711</td>
<td>29,128</td>
<td>24,601</td>
<td>15,345</td>
<td>17,889</td>
</tr>
<tr>
<td>재분류생산품</td>
<td>14,032</td>
<td>31,767</td>
<td>26,469</td>
<td>22,483</td>
<td>22,148</td>
<td>19,996</td>
</tr>
<tr>
<td>석유가스 및 기타가스</td>
<td>3,783</td>
<td>3,365</td>
<td>4,786</td>
<td>563</td>
<td>1,670</td>
<td>8,503</td>
</tr>
<tr>
<td>원유(액성유, 석유등)</td>
<td>2,886</td>
<td>3,679</td>
<td>5,036</td>
<td>1,994</td>
<td>2,605</td>
<td>1,307</td>
</tr>
<tr>
<td>시멘트</td>
<td>1,844</td>
<td>4,622</td>
<td>2,118</td>
<td>4,737</td>
<td>2,241</td>
<td>936</td>
</tr>
<tr>
<td>모래</td>
<td>627</td>
<td>5,693</td>
<td>12,207</td>
<td>21,626</td>
<td>5,786</td>
<td>12,096</td>
</tr>
<tr>
<td>유연탄</td>
<td>327</td>
<td>9</td>
<td>495</td>
<td>58</td>
<td>82</td>
<td>2</td>
</tr>
<tr>
<td>무연탄</td>
<td>67</td>
<td>150</td>
<td>1,009</td>
<td>719</td>
<td>314</td>
<td>1,245</td>
</tr>
</tbody>
</table>

(단위: 톤)

자료: 인천항 PORT-MIS, 인천항 통계청, 봉고품 판매량 현황(2009년-2014년)
27대, T/Crane 총 70대, R/Stacker 총 21대로 조사되었다.

이중 인천신항이 보유하고 있는 Yard Crane은 무인자동화 장비로 부산신항에 이어 인천항에서는 최초의 무인자동화 장비를 보유하고 있다.

또한 인천항 컨테이너 티미널 별 연간처리능력은 확인하여 인천항의 총 컨테이너 처리 물량과 비교하여 보면 현재 인천항 컨테이너 티미널 시설 공급이 수요를 초과하고 있는 것으로 확인되었으며, 이는 컨테이너 티미널 운영사간의 경쟁 심화를 초래할 것으로 보인다.

2) 컨테이너 티미널별 물동량

최근 5년간(2010년~2014년)의 인천항 컨테이너 티미널별 물동량 자료를 종합한 (표 4)를 통해 인천항 컨테이너 티미널별 물동량을 살펴보면 물동량 순위에는 중소 부분 변동이 있었으나, 2010년 이후 B사의 물동량 처리실적이 위를 유지하고 있다. 이는 B사의 부두 길이, 전면 수심 등 타 컨테이너 티미널에 비해 상대적으로 경쟁력이 있는 시설능력이 일정부분 영향을 미친 것으로 보인다.

또한 인천항의 특성상 컨테이너 물동량은 일반적인 컨테이너 정기선외에도 페리에 의해서 많은

<table>
<thead>
<tr>
<th>국명</th>
<th>2010년</th>
<th>2011년</th>
<th>2012년</th>
<th>2013년</th>
<th>2014년</th>
</tr>
</thead>
<tbody>
<tr>
<td>출</td>
<td>출</td>
<td>출</td>
<td>출</td>
<td>출</td>
<td>출</td>
</tr>
<tr>
<td>중</td>
<td>1,181 21.11</td>
<td>1,232 4.34</td>
<td>1,203 -2.35</td>
<td>1,282 6.50</td>
<td>1,388 8.32</td>
</tr>
<tr>
<td>베트남</td>
<td>79 11.59</td>
<td>93 17.19</td>
<td>97 5.14</td>
<td>125 28.08</td>
<td>154 23.38</td>
</tr>
<tr>
<td>태</td>
<td>73 26.60</td>
<td>74 0.86</td>
<td>72 -3.34</td>
<td>78 8.77</td>
<td>97 23.95</td>
</tr>
<tr>
<td>룹</td>
<td>70 7.09</td>
<td>72 2.97</td>
<td>78 8.20</td>
<td>86 10.19</td>
<td>94 9.41</td>
</tr>
<tr>
<td>한국</td>
<td>87 42.26</td>
<td>91 4.33</td>
<td>84 -7.35</td>
<td>108 28.91</td>
<td>91 9.41</td>
</tr>
<tr>
<td>기타</td>
<td>368 18.14</td>
<td>388 5.43</td>
<td>401 3.37</td>
<td>448 11.55</td>
<td>500 11.77</td>
</tr>
<tr>
<td>합계</td>
<td>1,858 20.52</td>
<td>1,950 4.92</td>
<td>1,935 -0.73</td>
<td>2,126 9.84</td>
<td>2,324 9.32</td>
</tr>
</tbody>
</table>

자료: 인천항 PORT-MIS, 인천항에서 처리되는 국가 및 물동량 현황(2010년-2014년)

<table>
<thead>
<tr>
<th>구분</th>
<th>2010년</th>
<th>2011년</th>
<th>2012년</th>
<th>2013년</th>
<th>2014년</th>
</tr>
</thead>
<tbody>
<tr>
<td>출</td>
<td>출</td>
<td>출</td>
<td>출</td>
<td>출</td>
<td>출</td>
</tr>
<tr>
<td>램차방</td>
<td>46,616 24.53</td>
<td>46,518 -0.21</td>
<td>49,398 6.19</td>
<td>52,599 6.48</td>
<td>65,505 24.54</td>
</tr>
<tr>
<td>방</td>
<td>26,648 29.89</td>
<td>27,457 3.03</td>
<td>22,096 -19.5</td>
<td>25,136 13.76</td>
<td>30,924 23.03</td>
</tr>
<tr>
<td>Others</td>
<td>161 26.42</td>
<td>84 -47.8</td>
<td>94 11.9</td>
<td>129 57.23</td>
<td>85 -34.1</td>
</tr>
<tr>
<td>합계</td>
<td>73,425 26.60</td>
<td>74,058 0.86</td>
<td>71,888 -3.34</td>
<td>77,864 8.77</td>
<td>90,514 23.95</td>
</tr>
</tbody>
</table>

자료: 인천항 PORT-MIS, 인천항에서 처리되는 대국 항안별 물동량 및 순위(2010년-2014년)
사회연결망 분석을 활용한 컨테이너 정기선 항로 변화 분석

표 8. 주요 국가 특정항별 컨테이너 연간물동량 (중국)

(단위: 천TEU)

<table>
<thead>
<tr>
<th>구분</th>
<th>2010년</th>
<th>2011년</th>
<th>2012년</th>
<th>2013년</th>
<th>2014년</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>총 TEU</td>
<td>증감률(%)</td>
<td>총 TEU</td>
<td>증감률(%)</td>
<td>총 TEU</td>
</tr>
<tr>
<td>청두</td>
<td>199</td>
<td>11.52</td>
<td>206</td>
<td>3.40</td>
<td>214</td>
</tr>
<tr>
<td>상해</td>
<td>213</td>
<td>52.27</td>
<td>211</td>
<td>-0.89</td>
<td>201</td>
</tr>
<tr>
<td>위해</td>
<td>120</td>
<td>12.71</td>
<td>117</td>
<td>-2.93</td>
<td>116</td>
</tr>
<tr>
<td>센카우</td>
<td>63</td>
<td>29.84</td>
<td>75</td>
<td>17.56</td>
<td>81</td>
</tr>
<tr>
<td>대만</td>
<td>70</td>
<td>29.32</td>
<td>74</td>
<td>6.33</td>
<td>72</td>
</tr>
<tr>
<td>Others</td>
<td>515</td>
<td>15.25</td>
<td>550</td>
<td>6.67</td>
<td>519</td>
</tr>
<tr>
<td>합계</td>
<td>1,181</td>
<td>21.11</td>
<td>1,232</td>
<td>4.34</td>
<td>1,203</td>
</tr>
</tbody>
</table>

자료: 인천항 PORT-MIS, 인천항에서 처리되는 중국 항만별 물동량 및 순위(2010년-2014년)

부분 처리되고 있는 것으로 나타났으며, 이는 대략적으로 인천항 전체 컨테이너 처리 물동량의 약 16%를 차지하고 있다.

이를 구분하여 보면 인천항 전체 처리물량 중 컨테이너 정기선사의 서비스를 통해서 처리되는 물량은 1,967천TEU로 대략 84%를 차지하고 있는 것으로 확인되었다. 이를 통해 인천항은 부산항과 광양항과 다르게 컨테이너 물량 처리가 테미널 외에서 많은 부분 이루어지고 있으며, 인천항 컨테이너 물동량 증가를 위해서 컨테이너 정기선 외에도 폐리 또한 동시에 고려해야 할 필요가 있다.

3. 인천항 컨테이너 물동량 세부 현황

(표 5)는 인천항에서 컨테이너로 수송되고 있는 화물을 정리한 것으로 인천항에서 컨테이너로 수송되는 화물은 총 39,374천톤이며 세부적인 품목의 종류는 방직용 섬유 및 제품이 17,816천톤으로 가장 많은 물량을 차지하고 있으며, 그 다음으로 전기기기 및 부품이 5,747천톤, 항공기, 선박 부품이 3,114천톤, 차량 및 부품이 1,235천톤, 피혁류 및 제품이 1,072천톤, 기계류 및 부품이 946천톤 등 일반적으로 섬유 제품과 기계 부품 등이

표 9. 주요 국가 특정항별 컨테이너 연간물동량(베트남)

(단위: 천TEU)

<table>
<thead>
<tr>
<th>구분</th>
<th>2010년</th>
<th>2011년</th>
<th>2012년</th>
<th>2013년</th>
<th>2014년</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>총 TEU</td>
<td>증감률(%)</td>
<td>총 TEU</td>
<td>증감률(%)</td>
<td>총 TEU</td>
</tr>
<tr>
<td>하이퐁</td>
<td>38</td>
<td>-3.57</td>
<td>44</td>
<td>16.97</td>
<td>42</td>
</tr>
<tr>
<td>호치민시티</td>
<td>40</td>
<td>29.06</td>
<td>47</td>
<td>17.65</td>
<td>44</td>
</tr>
<tr>
<td>캉 라이</td>
<td>0.2</td>
<td>77.67</td>
<td>0.02</td>
<td>-90.3</td>
<td>9</td>
</tr>
<tr>
<td>Others</td>
<td>0.9</td>
<td>73.98</td>
<td>1</td>
<td>33.7</td>
<td>2</td>
</tr>
<tr>
<td>합계</td>
<td>79</td>
<td>11.59</td>
<td>93</td>
<td>17.2</td>
<td>97</td>
</tr>
</tbody>
</table>

자료: 인천항 PORT-MIS, 인천항에서 처리되는 베트남 항만별 물동량 및 순위(2010년-2014년)
대부분의 물량을 차지하고 있는 것으로 나타났다.

그리고 <표 6>을 통해 인천항의 주요 국가별 컨테이너 물동량 현황을 살펴보면 중국 물동량이 지속적으로 가장 높은 비율을 차지하고 있는 것으로 나타났으며, 이를 통해 인천항이 중국과의 교역에 매우 높은 영향을 받고 있음을 확인해 볼 수 있다.

또한 최근 베트남과 태국 동남아시아 지역의 물동량이 매우 높은 증가율을 보이고 있는 점을 통해 인천항이 기존 한-중간의 무역 외에도 동남아시아 무역 시장까지 점차 그 영역을 넓히고 있음을 알 수 있다.

상기 자료들을 좀 더 세부적으로 확인하기 위해 인천항 컨테이너 물동량의 상위 3개 국가의 주요 항만을 하기 <표 7>에서 <표 9>를 통해 살펴보면 중국은 QINGDAO, 271천 TEU, SHANGHAI, 254천 TEU, WEIHAI, 119천 TEU로 세계 1위 컨테이너 처리 항만인 SHANGHAI와 중국 산둥반도에 있는 QINGDAO, WEIHAI 항만이 인천항의 물동량에 많은 영향을 미치고 있음을 알 수 있다. 이는 중국 동부 항만이 인천항 컨테이너 처리 물량에 많은 부분을 차지하고 있음을 나타낸다.

그리고 베트남의 경우에는 HAIPHONG, 76천 TEU, HO CHIMINH CITY 58천 TEU로 특히 HAIPHONG의 물동량 증가율이 34.4%로 매우 높은 수준임을 알 수 있으며 태국은 LAEM CHABANG, 66천 TEU, BANGKOK, 31천 TEU를 차지하고 있다.
4. 인천항 컨테이너 정기선 항로 현황

본 연구에서 확인하고자 하는 인천항의 컨테이너 정기선 항로의 변화 추이를 알아보고자 인천항에 기항하고 있는 컨테이너 정기선 항로의 시계열 자료를 구하기 위해 인천항 관련기관에서 공시하는 2차 자료를 확보하고자 하였으나 이 부분에 많은 애로사항이 있었으며 이로 인해 부득이 인천항 컨테이너 터미널 운영사들이 각 터미널별 대체적으로 공유하는 터미널 운영사 대부분 자료를 확인하여 기존 인천항 컨테이너 정기선 항로 현황을 〈표 10〉과 같이 작성하였으며, 이를 통해 인천항 컨테이너 정기선 항로의 장기간의 변화 추이를 알아보고자 한다.

〈표 10〉은 인천항 컨테이너 정기선 항로 현황을 분석해 보면 2008년도 29개의 정기선 항로가 2015년 43개로 14개 항로가 더 증가하였으며, 인천항 터미널 운영사는 총 4개 업체에서 총 9개 업채로 1개 업체가 증가함을 알 수 있다.

그리고 세부적인 컨테이너 정기선 항로를 살펴보면, 한국-중국항에는 큰 변화가 없는 것으로 확인되었다. 이는 현재 한국과 중국 사이에 컨테이너 항로 개설이 한층해운의 두바이에 따라 제한되고 있다는 점이 영향을 미친 것으로 보인다.

하지만 한국-남중국/동남아시아 항로는 지속적으로 증가하여 인천항 컨테이너 정기선 항로 증가에 많은 영향을 미쳤으며(2008년 대비 2배 이상 증가), 이를 통해 상기 3월에서 기존 한국-동남아시아의 물량증가세가 동남아시아 컨테이너 항로의 증가에도 긍정적 영향을 미쳤음을 간접적으로 확인할 수 있었다. 이는 인천항이 기존 한국과의 교역을 중심으로 하는 항만에서 동남아시아 시장의 진출할 항만으로 전차 그 역할이 다변화되고 있음을 나타낸다.

Ⅲ. 이론적 고찰

1. 인천항 관련 이론적 고찰

1) 물동량 예측

2) 항만 경쟁력 강화

진영희·정국뢰(2012)는 인천항의 문제점을 개선하고 경쟁력을 확보하기 위해 주요 항로대상자 경쟁국인 북중국 항만(칭다오항, 태진항, 다롄항)을 코피터리 대상으로 보고 코피터리 평가항목을 도출하고, 평가요인과 항목의 우선순위를 부여하였다.

김병일, 김호섭(2011)은 인천항과 경쟁 관계에 있는 국내 타 항만의 브랜드 경쟁력 수준을 비교하고자 하였으며, 브랜드 관련 선행연구를 통해 항만 브랜드 자산의 구성요인을 인지도, 이미지, 서비스품질, 관계만족 4가지로 정리하였다. 그리고 인천항의 브랜드 자산 구성요인들이 충성도에 미
치는 영향을 살펴본 결과 인천항은 인지도와 관련 mindset에서 강한 유의성이 있는 것으로 나타났다.

황현수(2014)는 덜 중요한 항로와의 교역에 대해 부산항과 인천항의 경쟁력에 비교 분석하였다.

정태원(2014)은 인천항의 여러 문제점들을 지적하고, 인천항 발전 방안에 대해 연구하였다.

도수신·이경배(2013)는 인천항과 광양항의 수출에 차이의 지속적 확대에 주목하고 있으며, 인천항의 대중국 수출의 빠른 증가세와 광양항의 대 중국 수출의 정체 또는 감소 추세가 향후에도 지속될지 여부를 보고하고자 하였으며 이에 따라 별반 시장점유율 모델을 이용하여 수출변화 요인을 분석하여 인천항의 수출에서 중국이 차지하는 비중이 높다는 점에서 수출에 취약한 구조를 갖고 있는지를 확인하였다.

임영태·박수인·최창호(2013)는 운전조사와 자료 분석을 통해 수도권 무역항의 문제점을 파악하고 이에 대한 개선 방안에 대해 고찰하였다.

조인교·이태휘·이기태(2012)는 요인분석과 Fuzzy-AHP 방법을 통해 인천항 케이스에서 터미널의 On-Dock 서비스의 핵심요소의 우선순위를 선정하고, 터미널 운영 효율화 방안에 대해 연구하였다.

남홍우·이기태(2011)는 인천항에 입항하는 선박 입항항과 관련된 업무 프로세스별 업종 소개 및 역할을 분석하고 입항항 과정에서 발생되는 비용을 분석하였다.

2. 컨테이너 정기선 및 항로 관련 이론적 고찰

1) 해운/항만 네트워크 분석

김성국(2013)은 지속가능한 물류활동에서 관심을 받고 있는 연안해운의 네트워크를 파악하기 위해 사회경량망분석(SNA)을 이용하여 우리나라 연안여객 항로를 분석하고 실제 연안 여객항로 중심이 제주, 목포를 입증하였다.

박창호·노홍승·이기태(2000)는 효율적인 항만 간의 연계를 위해 네트워크 이론을 이용하여 남북항만과 항만 네트워크 구축 방안 및 항만 노선을 중심으로 한 동북아시아 국제 물류 시스템 구축 전략을 제시하였다.

박력(2011)은 2008년 아시아 주요 항만을 대상으로 사회네트워크 분석(SNA)을 이용하여 항만 역할을 분석하였으며 물동량과 각 지역 집단 상관관계를 분석하여 아시아 주요 항만의 역할에 대해 살펴보았다.

2) 해운 경쟁력 강화

Fremont, A(2007)는 해운 서비스에서 대조되는
해부스포크 방식과 직기방식이 서로 충돌 되는 것이 아닌 서로 보완 관계에 있음을 입증하였다.

서홍용(2014)은 연안해운 자료를 이용하여 연안해운의 공간적 특성과 특정물품(시멘트)의 물량을 기준으로 국내 물류에서 연안해운이 차지하는 위상에 대해 고찰하였다.

박용안 · 최기영(2013)은 우리나라 주요 항로인 한일 항로의 발달 과정을 고찰하였고, 한일 항만 물동량에 대한 상관관계 분석을 통해 각 항만간 물동량이 서로 연관되어 있음을 입증하였다.

Wang, S. 외 1명(2013)은 실제 현장에서 발생하는 환적 비용, 슬랫 비용 등 전체 네트워크상에서 발생하는 비용들을 최소화하는 최적의 항만 로터리성을 밝혀내기 위한 모델을 제시하였다.

3) 항만과의 관계

장홍훈 · 한병섭(2009)은 네트워크 이론을 통해서 글로벌 선사의 항만선택 결정요인을 규명하고 있으며 중국과 한국의 주요항만들을 대상으로 분석하였다.

Ducruet, C. 외 1명(2012)은 최근 수십 년간의 컨테이너 수송의 발달 과정을 분석한 후 정기선 해운 네트워크의 특징을 밝혀내며 중심성, 계층 구조 및 선택 요인의 개념들을 활용하여 정기선 해운 네트워크에서의 항만의 위치를 살펴보았다.

Lam, J. S. L., 외 1명(2011)은 공급체인에서 중간항만 관계와 항만 연결의 역할을 이해하기 위해 컨테이너 정기선 서비스의 기항 패턴을 분석하였다.

Mulder, J., 외 1명(2014)은 선박 다자인, 운항 스케줄, 화물 경로 문제 등 여러 문제들을 줄이기 위해 항만들을 하나의 집합으로 통합시킴을 계안하였다.

de Langen, P. 외 2명(2007)은 기존 항만 성적 지표인 항만 처리 물량은 항만의 경제적 영향, 항만 관련 산업에서의 지정학적인 매력 등을 분석하는데 실질적 한계가 있으며, 이에 따라 통합적인 항만의 영향을 나타내기 위해 새로운 항만 성적 지표(PPI)를 분석하였다.

조수원 외 3명(2007)은 동북아시아 항만에 기항하고 있는 선사들의 항로의 변화를 통해서 기항패턴을 분석하고 각 항만의 처리량 및 기항패턴의 변화에 따른 동북아시아 항만의 경쟁력을 변화를 분석하였다.

사양 사례를 통해 확인하였다.

Plum, C. F 외 3명(2014)은 알고리즘을 활용하여 해운의 적적화를 시킬 수 있음을 주장하고 있으며, 이를 활용하여 10-20개 정도의 항만 사이의 대량간 해운 서비스를 디지털 할 수 있음을 주장하였다.

3. 사회연결망분석(Social Network Analysis) 관련
이론적 고찰

1) 사회과학 분야 적용

김병국, 정석봉, 권기석(2013)은 구매 품목간의 연결관계를 파악하기 위해 온라인 쇼핑몰의 구매 테이터를 기초로 하여 사회연결망 분석을 수행하였다.

조용호 외 1명(2009)은 연결정도 중심성, 근접 중심성, 개개 중심성, 위세 중심성 개념을 적용하여 중심상품을 찾아 이를 통해 신제품을 구매할 가능성이 높은 고객에게 신제품을 추천하는 방식을 제시하였다.

Molano, S., 외 1명(2015)은 소셜네트워크를 분석하여 네트워크의 중심성은 의사소통을 원활하게 하는 프로세스가 있음을 보여주며 네트워크의 거점을 제거할 경우 전체 네트워크 효율에 영향을 미친다고 이야기하고 있다.

2) 기타 분야 적용(해운, 항만, 항공)

임명학(2012)은 DEA의 정조집합과 랜덤 값을 이용하여 DMU들 간 사회 네트워크를 생성하고, 아이템백터 중심성에 의해 간과될 수 있는 부분을 보완하는 페이지랭크(PageRank) 중심성 분석에 의해 효율적인 DMU의 영향력과 순위를 정하는 사회 네트워크 분석 방법을 제시하였다.

최경구 외 2명(2014)은 공항 효율성 분석을 위해 사용되어 왔던 DEA 방법론을 보완하고자 사회 네트워크 분석의 하나인 중심성 분석을 이용하여 공항의 효율성 순위를 측정하였으며, 이를 통해 공항의 내부, 외부를 종합적으로 평가하기 위해서는 효율성 분석뿐만 아니라 사회 네트워크 분석인 중심성 분석까지 수행하여야 정확한 공항 평가를 할 수 있다고 주장하였다.

임병학(2011)의 연구에서는 항만 네트워크 구조를 파악하고자 사회 네트워크 분석 지표인 중심성과 구조적 공백 분석을 이용하였고, 이 지표들이 항만 생산성에 미치는 영향을 회귀분석을 통해 검정하였고 이를 통해 항만네트워크의 중심성이 높은 항만 Singapore임을 그리고 생산성이 높은 효율적 항만은 Singapore, Hong Kong, Tanjung Priok, Yokohama 임을 확인하였다.
김주혜·권오경(2014)은 DEA 분석을 통해 도출한 항만 효율성 지표와 SNA 분석을 통해 도출한 항만 네트워크 지표간의 관계를 보기 위해 상관분석을 실시하여 효율성 지표들을 파악하기 위해 사용될 수 있는 중심성 지표 중 적합성이 높은 지표들을 파악하고자 하였으며, 이를 통해 근접 중심성, 매개 중심성, 아이겐벡터 중심성, 페이지랭크 중심성 이 효율성 지표들과 유의한 상관관계를 가지는 것으로 확인하였다.

상기 문헌고찰을 통해 인천항에 관한 최근 연구들을 살펴보면 물동량 예측, 항만 서비스, 경쟁력 강화, 노무, 환경문제와 같은 다양한 연구가 이루어지고 있음을 알 수 있었다.

하지만 인천항에서 최근 관심을 받고 있는 컨테이너 정기선, 특히 인천항에 기항하고 있는 컨테이너 정기선 서비스 및 정기선 항로에 대한 연구는 부족한 것으로 보이며 이에 대한 연구가 필요할 것으로 보인다.

이를 위해 컨테이너 정기선 및 항로(항만네트워크) 관련 연구와 사회연결망 분석을 활용한 다양한 연구들을 고찰하였으며 이를 통해 최근 사회과학 분야에 다양한 연구들이 다양한 분야에 다양한 연구들이 다양하게 활용되고 있으나 사회연결망 분석(Social Network Analysis) 기법이 정차 해산, 항만물류 분야에서도 도입되고 있는 점을 확인 할 수 있었다.

본 연구는 상기와 같은 문헌 고찰을 기반으로 인천항이라는 항만을 중심으로 하는 항만 네트워크, 특히 컨테이너 정기선 네트워크를 사회연결망 (Social Network Analysis) 기법을 활용하여 분석하고 그 중요도에 대해 확인하고자 한다.

IV. 사회연결망분석

(Social Network Analysis)

1. 사회연결망분석(Social Network Analysis) 개요

사회연결망 분석의 목적은 정보가 흐르는 연결망 형태에 특징을 도출하고, 연결망의 관계성으로부터 특성을 설명하거나 연결망을 구성하는 단위의 행위를 설명하는 것이다.(김용학, 2011, 사회연결망분석)

사회 연결망(Social Network)은 Social+Network 가 합쳐진 용어로서 개인, 기업 등 다수의 객체가 서로 연결되고 있는 관계에 따라 형성된 연결망을 의미하며, 각각의 객체들의 서로간의 상호작용을 통해 만들어진다.

현재 전 세계는 인터넷의 보급과 정보 통신 기술의 발달로 인해 페이스북, 트위터 등 다양한 소셜네트워크(Social Networking Service) 등을 통해 예전보다 더욱 쉽게 많은 사람 혹은 정보들과 상호간의 관계를 맺게 되며 이러한 활동들은 기존 사회과학분야에서 정량적인 방법들을 통해 밝혀내지 못한 객체들 간의 관계를 밝혀내기 위해 사회연결망분석(SNA)를 통해서 데이터 분석을 하여 다양한 마케팅 및 사업영역에 적용하고 있다.

기존의 사회과학 분야가 아닌 해운항만물류분야에서도 최근 사회연결망분석(SNA)에 대한 관심을 가지고 다양한 연구들이 발표 되고 있으며, 전차 사회연결망 분석(SNA)의 활용도는 높아질 것으로 보인다.

2. 중앙성(Centrality)

중앙성(Centrality)이란 영향력이라는 개념과 연결되어 사회연결망 분석에서 가장 많이 활용되는 지표 중 하나이다. 일반적으로 중앙성이 높을 경우 좋은 성과 혹은 높은 지위를 가지고 있으며 그 역기에 중앙성이란 개념은 통계 분석에서 훌륭한 변수로 사용된다.

일반적으로 중앙성은 한 점(node)이 다른 점(node)과 얼마나 많이 연결되어 있는지 또는 한 점(node)이 다른 점(node)에 도달하기 위해서는 몇 단계를 거쳐야 하는지 혹은 다른 점(node)이 또 다른 점(node)에 도달하기 위해서 거쳐 가야
한국항만경제학회지 제32집 제1호

하는 점(node) 등 여러 가지 개념을 가지고 있다. (김용학, 2011, 사회연결망분석)

1) 연결정도 중앙성(degree centrality)

다른 점(node)과의 연결 정도를 중요시하며 연결망내에서 한 점(node)에 연결되어 있는 점(node)들의 합을 나타낸다.

일반적으로 방향성이 있는 연결망에서 다른 점(node)에서 오는 방향의 연결은 내향 중앙성(in-degree centrality)이라 하며, 한 점(node)에서 외부로 나가는 방향의 연결은 외향 중앙성(out-degree centrality)라고 하고 연결정도 중앙성은 내향 중앙성과 외향 중앙성의 합으로 계산된다.

연결정도 중앙성이 높은 점(node)은 마당발이라 불리며 다른 점(node)들과 많은 관계를 맺고 있으며 이를 통해 다양한 정보를 가질 확률이 높다.

![그림 1. 연결정도 중앙성]

자료: Sentinel Visualizer 홈페이지

2) 인접 중앙성(closeness centrality)

한 점(node)이 다른 점(node)에 얼마나 가깝게 위치하고 있는가를 나타내는 개념으로 인접중앙성은 다른 점(node)들과의 인접성(closeness) 또는 거리(distances)로 측정 할 수 있으며, 두 점(node) 간의 거리는 두 점(node)을 잇는 최단거리, 경로 거리를 의미한다.

이러한 경로 거리의 합이 가장 작은 점(node)이 전체 중앙성이 가장 높은 네트워크 전체의 중심을 차지한다. 인접 중앙성도 방향성이 있는 경우에는 내향 인접성(in closeness)와 외향 인접성(out closeness)로 구분되어 있다. (김용학, 2011, 사회연결망분석)

일반적으로 인접 중앙성이 높은 경우 연결망 내에서 핵심적인 점(node)과 가까운 거리에 위치하고 있음을 나타내며 이로 인해 정보의 확보가 용이하다 할 수 있다.

![그림 2. 인접 중앙성]

자료: Sentinel Visualizer 홈페이지

3. 사이 중앙성(betweenness centrality)

한 점(node)이 연결망 내의 다른 점(node)들 사이에 위치한 경우를 측정하는 개념으로 사이 중앙성은 최단 경로 위에 위치하면 할수록 높아지는 특성을 가지고 있다. 이러한 사이 중앙성이 높은 점(node)은 브로커(broker)로서 다른 점(node)들의 의존성이 높아 다른 점(node)들에 미치는 영향이 크다고 할 수 있다.

상기와 같이 사회연결망 분석(Social Network Analysis)의 대략적인 개요 및 중앙성(centrality)의 개념에 대해 살펴보았으며, 실제 본 연구에서는 앞서 2장 4절에서 설명한 인천항 컨테이너 정기선 항로의 2008년도 상반기부터 2015년 상반기까지의 변화를 살펴보고 위해 여러 사회연결망 분석 프로그램 중 하나인 UCINET6.0을 활용하고자 하며 시각화 분석을 위해 NetDraw를 그리고 중앙성(centrality) 분석을 위해 연결정도 중앙성, 인접 중앙성, 사이 중앙
사회연결망 분석을 활용한 컨테이너 정기선 항로 변화 분석

성을 중심으로 분석을 진행하고자 한다.

![그림 3. 사이 중앙성](ネットワーク)

자료: Sentinel Visualizer 홈페이지

V. 컨테이너 정기선 항로 네트워크 분석

1. 분석자료

본 연구에서 사용한 자료는 인천항 컨테이너 터미널 운영시간에 선적 확인 등 터미널 운영 목적을 위해 내부적으로 공유하는 B. Windows 중 항로관련 부문만을 제 정리(2008년~2015년)하여 시계열 자료를 작성하였으며, 이를 방향성이 있는 연결망 자료로 변환하여 사회네트워크(Social Network Analysis) 분석 프로그램인 UCINET 6.0을 이용하여 연결망 분석을 진행하였다.

네트워크 분석 방법은 기존의 통계적 자료 분석 방법에서 사용되는 코딩 값과는 달리 다양한 자료를 사용할 수 있으며 변수 간에는 서로 독립적이라는 가정과 달리 상호관련성이 있다는 점에 재에서 사회연결망 분석이 이루어지고 실제 네트워크 구조를 명확히 파악할 수 있다는 장점이 있다.(김성국, 2013)

2. 분석결과

1) 인천항 컨테이너 정기선 항로 시각화

우선 인천항 컨테이너 정기선 항로 연결망 자료를 NetDraw를 활용하여 네트워크 시각화 자료로 변환하였습니다. 이를 통해 인천항 컨테이너 정기선 항로 네트워크에 대해 탐색적 분석을 진행하였다.

그림 4는 2008년 5월부터 2015년 6월까지 인천항 컨테이너 정기선 항로를 네트워크로 도식화한 것으로 이를 통해 인천항 컨테이너 정기선 항로의 세부적인 중앙성(centrality) 분석을 진행하기 전에 개략적으로 인천항 컨테이너 정기선 항로
에 대해 탐색적 분석을 진행하였다.

상기의 도식화 자료들을 살펴보면 2008년도 인천 항을 기위하는 컨테이너 정기선 항로의 연결성은 홍콩항과 부산항에 집중되어 있는 것으로 보이니, 2015년도에는 홍콩항과 부산항뿐 아니라 상가포르, 상해, 호치민 등 점차 다양한 거점의 연결성이 높아지고 있으며 2008년에 비해 거점(node)의 증가, 항로 네트워크의 증가로 인해 인천항 컨테이너 정기선 항로 네트워크가 세밀하게 변화된 것으로 보인다.

2) 인천항 컨테이너 정기선 항로 중심성(centrality) 분석

상기 인천항 컨테이너 정기선 항로 네트워크 도식화 자료를 통해 개략적으로 인천항 컨테이너 정기선 항로의 변화를 살펴보고 다음으로 세부적인 인천항 컨테이너 정기선 항로의 중심성(centrality) 분석을 실행하였다.

UCINET에서는 중심성 지표로써 연결정도 중심성(Freeman's degree centrality measures), 근접 중심성(closeness centrality), 매개 중심성(Freeman betweenness centrality)을 권장하고 있다. (김성국,

<table>
<thead>
<tr>
<th>구분</th>
<th>순위</th>
<th>항만</th>
<th>연결정도중심성</th>
<th>구분</th>
<th>순위</th>
<th>항만</th>
<th>연결정도중심성</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Out</td>
<td>In</td>
<td>총계</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008년 5월</td>
<td>1</td>
<td>INCHEON</td>
<td>11</td>
<td>16</td>
<td>27</td>
<td>1</td>
<td>INCHEON</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HONGKONG</td>
<td>13</td>
<td>10</td>
<td>23</td>
<td>2</td>
<td>HONGKONG</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BUSAN</td>
<td>7</td>
<td>9</td>
<td>16</td>
<td>3</td>
<td>BUSAN</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>QINGDAO</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>SHANGHAI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SHANGHAI / KAOSHIUNG</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>KWANGYANG</td>
</tr>
<tr>
<td>2012년 6월</td>
<td>6</td>
<td>SINGAPORE</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td></td>
<td>LAEMCHABANG/SIN</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>INCHEON</td>
<td>13</td>
<td>16</td>
<td>29</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HONGKONG</td>
<td>12</td>
<td>11</td>
<td>23</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BUSAN</td>
<td>8</td>
<td>11</td>
<td>19</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SHANGHAI</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SHEKOU</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SINGAPORE</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>SHEKOU/QINGDAO</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>INCHEON</td>
<td>14</td>
<td>12</td>
<td>26</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HONGKONG</td>
<td>13</td>
<td>13</td>
<td>26</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BUSAN</td>
<td>10</td>
<td>11</td>
<td>21</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SHANGHAI</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SINGAPORE</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>QINGDAO</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>INCHEON</td>
<td>14</td>
<td>19</td>
<td>33</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HONGKONG</td>
<td>17</td>
<td>13</td>
<td>30</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BUSAN</td>
<td>10</td>
<td>12</td>
<td>23</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SHANGHAI</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SINGAPORE</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>QINGDAO</td>
<td>14</td>
<td>17</td>
<td>31</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>INCHEON</td>
<td>14</td>
<td>13</td>
<td>27</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>14</td>
<td>13</td>
<td>27</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>HONGKONG</td>
<td>14</td>
<td>14</td>
<td>27</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SHEKOU</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>SHEKOU</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>INCHEON</td>
<td>14</td>
<td>14</td>
<td>27</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>13</td>
<td>13</td>
<td>27</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>HONGKONG</td>
<td>11</td>
<td>12</td>
<td>23</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SHANGHAI</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

주) 인천항의 중앙성이 상위에 올라가 있으며, 이는 인천항의 컨테이너 정기선 항로를 분석하였기 때문임.
연결정도 중앙성(degree centrality)

(표 11)과 같이 2008년 5월부터 2015년 6월까지 인천항을 이는 컨테이너 정기선 네트워크상에서의 연결정도 중앙성을 분석하여 그 결과를 확인해보면 인천항을 제외하고 홍콩, 부산이 순위에 변동은 있으나 상위를 지속적으로 유지하고 있는 것으로 나타났으며, 그 다음으로 상해, 싱가포르 등이 영향력을 미치는 것으로 확인되었다.

항만 네트워크에서 연결 중심성이 높은 항만은 네트워크 내의 많은 다른 항만들과 직접적인 관계를 맺고 있음을 의미하므로 항만 네트워크에서 더대로써 큰 영향력을 행사하는 항만을 나타내며(강 동준 외 2명, 2014) 이를 통해 인천항 컨테이너 정기선 네트워크에서는 인천항을 제외하고 홍콩, 부산이 높은 영향력을 행사하는 마당발의 역할을 하고 있음을 알 수 있다.

인접 중앙성(closeness centrality)

인접 중앙성(closeness centrality)은 한 점(node)이 다른 점(node)에 얼마나 가깝게 위치하고 있는 가를 나타내는 개념으로 다른 점(node)들과의 인접성(closeness) 또는 거리(distances)로 측정할 수 있으며, 이러한 경로 거리의 합이 가장 작은 점(node)이 전체 중앙성이 가장 높은 네트워크 전체의 중심을 차지한다.

인접 중앙성(closeness centrality)도 방향성이 있는 경우에는 내향 인접성(in closeness)과 외향 인접성(out closeness)로 구분되어 있다. (김용학, 2011, 사회연결망분석) 일반적으로 인접 중앙성이 높은 경우 연결망 내에서 핵심적인 점(node)과 가까운 거리에 위치하고 있음을 나타내며 이로 인해 정보의 확보가 용이하다 할 수 있다.

연결정도 중앙성과 유사하게 인천항을 제외하고 홍콩, 부산이 상위를 유지하고 있는 것으로 나타났으며, 그 다음으로 상해, 싱가포르, 그리고 그다음으로 순위 변동을 하고 있는 것으로 확인되었다.

인접 중앙성이 높은 항만은 네트워크에서 핵심

<table>
<thead>
<tr>
<th>구분</th>
<th>순위</th>
<th>항만</th>
<th>연결정도 중앙성</th>
<th>구분</th>
<th>순위</th>
<th>항만</th>
<th>연결정도 중앙성</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Out In 총계</td>
<td></td>
<td></td>
<td></td>
<td>Out In 총계</td>
</tr>
<tr>
<td>2008년 5월</td>
<td>1</td>
<td>HONGKONG</td>
<td>46,316</td>
<td>45,833</td>
<td>92,149</td>
<td>2012년 6월</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>46,316</td>
<td>45,361</td>
<td>91,677</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEON</td>
<td>45,833</td>
<td>39,64</td>
<td>85,473</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>ULSAN</td>
<td>37,607</td>
<td>41,905</td>
<td>79,512</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>QINGDAO</td>
<td>32,117</td>
<td>42,308</td>
<td>74,425</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2008년 10월</td>
<td>1</td>
<td>INcheon</td>
<td>50,588</td>
<td>47,253</td>
<td>97,841</td>
<td>2012년 11월</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>48,315</td>
<td>47,253</td>
<td>95,568</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>HONGKONG</td>
<td>50,588</td>
<td>44,792</td>
<td>95,38</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>37,391</td>
<td>40,566</td>
<td>77,957</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>QINGDAO</td>
<td>34,4</td>
<td>43,434</td>
<td>77,834</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
사회연결망 분석을 활용한 컨테이너 정기선 항로 변화 분석

<table>
<thead>
<tr>
<th>연도</th>
<th>항구</th>
<th>위치</th>
<th>시간적 주요 정보</th>
<th>시점</th>
<th>항구</th>
<th>위치</th>
<th>시간적 주요 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009년 5월</td>
<td>HONGKONG</td>
<td>47.368</td>
<td>46.592</td>
<td>93.76</td>
<td>2013년 6월</td>
<td>BUSAN</td>
<td>39.13</td>
</tr>
<tr>
<td>2009년 10월</td>
<td>INcheon</td>
<td>43.295</td>
<td>40.909</td>
<td>84.178</td>
<td>2013년 10월</td>
<td>INCHEON</td>
<td>39.416</td>
</tr>
<tr>
<td>2010년 4월</td>
<td>SHANGHAI</td>
<td>42.857</td>
<td>39.823</td>
<td>82.68</td>
<td>2014년 6월</td>
<td>SINGAPORE</td>
<td>34.177</td>
</tr>
<tr>
<td>2010년 11월</td>
<td>KEELUNG</td>
<td>39.475</td>
<td>39.823</td>
<td>79.297</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주: 인천항의 중앙성이 상위에 올라가 있으며, 이는 인천항의 컨테이너 정기선 항로를 분석하였기 때문임.

이 되는 향연과 가까운 거리에 위치하고 있어 주요 정보를 빠르게 확보할 가능성이 높으며 선사들의 선택에 의해 결정되어지는 항만 네트워크 내에서 중심위치에 존재하는 항만은 정보, 영향력, 지위에 대한 확보와 접근이 쉽기 때문에 네트워크 상에서 영향력이 높다. (강동준 외 2명, 2014)

(3) 사이 중앙성(betweenness centrality)

사이 중앙성(betweenness centrality)은 한 점(node)이 연결망 내의 다른 점(node)들 사이에 위
표 13. 인천항 컨테이너 정기선 네트워크 사이 중량성 분석

<table>
<thead>
<tr>
<th>구분</th>
<th>순위</th>
<th>항만</th>
<th>사이중량성</th>
<th>구분</th>
<th>순위</th>
<th>항만</th>
<th>사이중량성</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008년 5월</td>
<td>1</td>
<td>HONGKONG</td>
<td>972.4</td>
<td>2012년 6월</td>
<td>1</td>
<td>INCHEN</td>
<td>1103.048</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>750.133</td>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>916.087</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>708.533</td>
<td></td>
<td>3</td>
<td>HONGKONG</td>
<td>899.908</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>PYONGTAEK</td>
<td>213.867</td>
<td></td>
<td>4</td>
<td>SHANGHAI</td>
<td>566.123</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SINGAPORE</td>
<td>198.5</td>
<td></td>
<td>5</td>
<td>SINGAPORE</td>
<td>540.849</td>
</tr>
<tr>
<td>2008년 10월</td>
<td>1</td>
<td>HONGKONG</td>
<td>777.524</td>
<td></td>
<td>1</td>
<td>BUSAN</td>
<td>1092.538</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>775.071</td>
<td></td>
<td>2</td>
<td>INCHEN</td>
<td>1047.661</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>683.465</td>
<td></td>
<td>3</td>
<td>HONGKONG</td>
<td>947.789</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>270.655</td>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>930.36</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>TOKYO</td>
<td>164</td>
<td></td>
<td>5</td>
<td>SHANGHAI</td>
<td>547.035</td>
</tr>
<tr>
<td>2009년 5월</td>
<td>1</td>
<td>HONGKONG</td>
<td>944.905</td>
<td></td>
<td>1</td>
<td>BUSAN</td>
<td>1169.469</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>849.312</td>
<td></td>
<td>2</td>
<td>INCHEN</td>
<td>971.18</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>656.869</td>
<td></td>
<td>3</td>
<td>SINGAPORE</td>
<td>950.608</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SHANGHAI</td>
<td>1098.188</td>
<td></td>
<td>4</td>
<td>HONGKONG</td>
<td>810.476</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SINGAPORE</td>
<td>197.395</td>
<td></td>
<td>5</td>
<td>SHEKOU</td>
<td>257.543</td>
</tr>
<tr>
<td>2009년 10월</td>
<td>1</td>
<td>HONGKONG</td>
<td>1094.276</td>
<td></td>
<td>1</td>
<td>INCHEN</td>
<td>1109.297</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>975.84</td>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>1064.687</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>793.84</td>
<td></td>
<td>3</td>
<td>SINGAPORE</td>
<td>911.288</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>298.352</td>
<td></td>
<td>4</td>
<td>HONGKONG</td>
<td>892.556</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>XIAMEN</td>
<td>205.317</td>
<td></td>
<td>5</td>
<td>SHEKOU</td>
<td>513.017</td>
</tr>
<tr>
<td>2010년 4월</td>
<td>1</td>
<td>HONGKONG</td>
<td>1160.602</td>
<td></td>
<td>1</td>
<td>HONGKONG</td>
<td>1102.579</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>996.001</td>
<td></td>
<td>2</td>
<td>BUSAN</td>
<td>1095.419</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>820.421</td>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>1091.563</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>319.212</td>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>864.847</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>XIAMEN</td>
<td>246.567</td>
<td></td>
<td>5</td>
<td>SHANGHAI</td>
<td>272.971</td>
</tr>
<tr>
<td>2010년 11월</td>
<td>1</td>
<td>BUSAN</td>
<td>1451.712</td>
<td></td>
<td>1</td>
<td>BUSAN</td>
<td>1179.067</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HONGKONG</td>
<td>1355.7</td>
<td></td>
<td>2</td>
<td>INCHEN</td>
<td>1150.88</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>1148.614</td>
<td></td>
<td>3</td>
<td>SINGAPORE</td>
<td>909.768</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>855.531</td>
<td></td>
<td>4</td>
<td>HONGKONG</td>
<td>854.675</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DOUALA 외 5개</td>
<td>275</td>
<td></td>
<td>5</td>
<td>SHEKOU</td>
<td>391.785</td>
</tr>
<tr>
<td>2011년 5월</td>
<td>1</td>
<td>BUSAN</td>
<td>1277.182</td>
<td></td>
<td>1</td>
<td>BUSAN</td>
<td>1430.181</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>HONGKONG</td>
<td>1233.554</td>
<td></td>
<td>2</td>
<td>INCHEN</td>
<td>1051.847</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>INCHEN</td>
<td>1111.514</td>
<td></td>
<td>3</td>
<td>SINGAPORE</td>
<td>865.415</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SINGAPORE</td>
<td>831.52</td>
<td></td>
<td>4</td>
<td>HONGKONG</td>
<td>744.244</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>DURBAN 외 5개</td>
<td>265</td>
<td></td>
<td>5</td>
<td>HOCHIMINH</td>
<td>419.996</td>
</tr>
</tbody>
</table>
사항성별 분석을 활용한 컨테이너 정기선 항로 변화 분석

치한 정도를 측정하는 개념으로 사이 중앙성은 최단 경로 위에 위치하면 할수록 높아지는 특성을 가지고 있다.

또한 사이중심성은 다른 네트워크와 가교적인 연결일라 할 수 있으며, 이러한 매개 노드는 정보 연락 책임자, 대변인, 모니터 역할, 혹은 조정자 역할로 활동할 수 있다. (강동준 외 2명, 2014)

表 13과 같이 2008년 5월부터 2015년 6월까지 인천항을 기항하는 컨테이너 정기선 네트워크상에 서의 사이중앙성(betweenness centrality)을 분석하여 그 결과를 확인해보면 연결성도 중앙성, 인접 중앙성과 유사하게 인천항을 제외하고 홍콩, 부산이 지속적으로 상위를 유지하고 있는 것으로 나타났다.

단 최근 분석 결과를 보면 홍콩항의 사이중央성(betweenness centrality)이 낮아진 반면 싱가포르의 사이 중앙성이 높아진 것을 확인 할 수 있었다.

VI. 결론

1. 연구요약 및 결론

본 연구는 최근 컨테이너 물량 증가 및 인천 신항 개장, 미주 컨테이너 정기선 항로 개설 등으로 새로운 발전을 위해 다양한 시도를 하고 있는 인천항 컨테이너 시장에 대한 기초 분석으로 물량통, 항만서비스, 경쟁력 강화 라는 기존 시설, 공급적 분석 측면에서 벗어나 인천항을 기항하고 있는 컨테이너 정기선 항로의 네트워크를 중심으로 분석을 진행하였다.

을 위해 본 연구에서는 2008년 5월부터 2015년 6월까지 인천항을 기항하는 컨테이너 정기선 항로(항만 네트워크)를 대상으로 하여 사회연결망 분석(Social Network Analysis)을 실시하였으며 시계열 자료를 활용하여 분기별로 인천항 컨테이너 정기선 항로의 변화 추이 및 중심성(centrality) 추이를 밝혀냈다.

우선 인천항의 2008년도부터 2015년도까지의 시계열 자료를 분석한 결과 29개의 컨테이너 정기선 항로(2008년)는 43개(2015년) 항로로 14개 항로(48%)가 더 증가하였다는 점을 확인할 수 있었으며 인천항의 항로 중에는 한중/남중국/동남아시아 항로의 증가가 많은 영향을 미쳤다는 것을 알 수 있었다.(한중 근해 항로 13개로 동일, 한일 항로는 소폭 감소, 한-남중국/동남아시아 항로 2배 이상 증가)

 이를 통해 인천항이 중국외의 항만으로도 점자 네트워크를 확장하고 있으며 특히 최근 활발한 발전을 하고 있는 동남아시아 시장으로의 진출입 통로로서
의 역할이 높아지고 있음을 확인할 수 있었다.

다음으로 네트워크 시각화 자료를 통해 개략적으로 인천항 컨테이너 정기선 항로에 대해 탐색적 분석을 진행한 결과, 2008년도 인천항을 기항하는 컨테이너 정기선 항로의 연결성은 홍콩과 부산에 집중되어 있는 단순한 형태의 네트워크를 구성하였으나 최근에는 거점(node)의 증가, 항로 네트워크의 증가로 인해 인천항 컨테이너 정기선 항로 네트워크가 세밀히 다양하게 변화되고 있음을 확인하였다.

마지막으로 본 연구에서 확인하고자 하는 인천항의 컨테이너 정기선 네트워크상의 중심성(centrality) 분석을 진행한 결과 연결점도 중심성(degree centrality), 인접 중심성(closeness centrality), 사이 중앙성(betweenness centrality)에서 매 분기마다 순위에 차이는 있으나, 인천항을 제외하고 홍콩, 부산이 지속적으로 높은 영향력을 가지고 있다는 점을 확인하였다.

이는 컨테이너 정기선 항로의 결과 이 운항선사에 의해서 이루어지는 상황에서 인천항을 기항하는 운항선사들은 인천항을 연결하는 항로상에서 홍콩과 부산을 중요하게 고려하고 있다는 점을 시사한다.

그리고 세계 컨테이너 물류망 순위(14년 기준) 1위와 2위를 차지하는 상해, 싱가포르보다 홍콩, 부산(4위, 6위)이 인천항 컨테이너 정기선 네트워크에서 높은 영향력을 가지고 있다는 점은 상해항 이 네트워크상 인천항에 높은 영향력을 미치는 허브로서의 역할보다는 한국-중국의 직교역 형태의 자체 물류망을 처리하고 있다는 점, 그리고 아시아의 주요 허브인 싱가포르는 인천항과의 직접 거리로 인해 인천항 컨테이너 네트워크상에서 상대적으로 영향력이 떨어지는 점을 시사한다.

또한 최근 중국 동부 항만들이 허브화 되고 인천항은 중국 동부 항만의 스포크항이 될 것이라는 우려와는 달리 인천항의 컨테이너 정기선 네트워크 상에서는 중국 동부 항만들이 인천항에 높은 영향력을 행사하지 않고 있음을 확인할 수 있었으며, 청도, 상해, 위해, 쌍보와 같은 인천항에서 컨테이너 처리 물류망이 높은 양만이 컨테이너 정기선 네트워크 상 높은 영향력을 미치지 않고 있다는 점을 통해 처리 물류망과 네트워크상의 영향력은 동일하지 않을 수 있다는 점을 확인하였다.

2. 연구의 시사점 및 향후 연구방향

본 연구는 인천항을 기항하는 컨테이너 정기선 항로를 분석하여 네트워크상 인천항에 높은 영향력을 가지는 허브 항구로 홍콩과 부산이라는 점을 밝혀냈으며 상하를 포함한 중국 동부 항만이 인천항 컨테이너 정기선 네트워크에서 미치는 영향력이 상대적으로 낮다는 점을 통해서 중국 동부항만에 인천항의 허브로서 보다 여려다는 점을 확인하였다.

그러므로 아시아의 주요 허브인 싱가포르 역시 인천항과의 이격거리로 인해 인천항의 허브 역할을 하지 않고 있음을 확인하였다.

또한 인천항 처리 물류망의 높은 비율을 차지하고 있는 청도, 상해, 위해, 쌍보와 같은 중국 항만이 인천항 컨테이너 정기선 네트워크상에서 상대적으로 높은 영향력을 보이고 있다는 점을 통해 물류망과 네트워크상의 영향력이 동일하지 않을 수 있다는 점을 밝혀냈다.

상기와 같이 본 연구는 일반적으로 항만을 바라보는 주요 시각인 물류망, 시설능력이라는 기존의 시각에서 벗어나 항로라는 요소를 통해 항만을 조급 다른 방향에서 바라보는 시도를 하였으며, 이를 통해 연구분야에서는 기존 인천항과 관련된 다양한 연구들 중 인천항 항로와 관련된 연구가 현재까지 미흡하다는 점, 따라서에서는 사회연결망 분석(Social Network Analysis)을 통한 연구가 많이 진행되어 왔으나 해운/항만 분야에서는 아직까지 사회연결망 분석을 통한 연구가 초기 단계라는
점에서 향후 좁게는 인천항의 항로(항만 네트워크)에 대한 새로운 연구의 초점을 수 있으며, 널
계는 사회 연결망 분석 방법을 통한 해운/항만 분
야의 연구가 기조가 될 수 있다는 점에서 그 의의
가 있다 하겠다.

또한 인천항 컨테이너 경기선 항로 현황 및 인
천항에 높은 영향력을 미치는 허브항을 확인함으
로서 인천항이 향후 허브항으로 발전하기 위한 연
구에도 도움이 될 것으로 사료된다.

그리고 민간분야에서는 인천항 컨테이너 경기선
항로상 기항 항만의 증가 및 항로의 증가로 수도
권 및 중부 지역 화물에 부산항까지 운송하는
육상 운송비를 줄여 줄 수 있다는 점에서 물류비
용 감소 및 인천항 추가 활동량 창출을 위한 홍
보, 마케팅 활동에도 긍정적 영향을 미칠 것으로
보인다.

또한 공공분야에서는 인천항 컨테이너 시장의
경제력 강화를 위한 포트 세일즈, 항만간 MOU 체
결 등 공공 분야 정책, 전략의 본 연구에서 확
인 된 인천항 컨테이너 경기선 항로상의 중요 항
만(node)을 동시에 고려하고 네트워크 관점에서
인천항과 연결 정도가 부족한 항만항도 지속적으
로 네트워크 강화를 위한 노력을 한다면 향후 인
천항 발전에 긍정적 영향을 미칠 것으로 보이며
인천항을 위한 정책, 전략 수립에도 도움이 될 것
으로 사료된다.

하지만 본 연구는 인천항이라는 특정 항만을 중
심으로 연구를 진행한 점에서 아쉬움이 남으며 인
천항의 항로에 대한 시계열 자료를 구축하기 위해
공시된 2차 자료를 활용하기 하였으나 장기간의
인천항 항로에 대한 세부적인 2차 자료를 구하는
것에 어려움이 많아 부득이 공시된 자료가 아닌
인천항 컨테이너 터미널 운영기간에 공유하는 운
영사 내부자료를 활용하여 연구를 진행한 점에서
아쉬움이 남는다.

향후 국내 주요 항만인 부산항, 광양항의 컨테
이너 경기선 항로에 대한 자료를 구하여 전체적인
효율을 살펴보고 주요 컨테이너 항로상에서 높은
영향력을 미치는 항만을 밝혀낸다면 본 연구에서
발현된 시사점 및 의미 외에 좀 더 다양한 결론과
시사점을 도출해낼 수 있을 것으로 기대 된다.

참고문헌

강동훈·방희석·우수한(2014), "세계 주요 정기선사의 항
만 네트워크에 관한 연구", 『한국항만경제학회지』
제30집 제1호, 75-96.

김병국·정석홍·권기석(2013), "사회 연결망 분석에
의한 운송물류 경제적 관계 분석에 관한 연
구", 『지리정보학회논집』, 제11집 제11호, 209-
217.

김병일·김홍수(2011), "인천항의 브랜드파워제고 전략
에 관한 연구", 『한국항만경제학회지』, 제27집 제2
호, 111-130.

김성국(2013), "SNA를 이용한 우리나라 항만여객항로의
네트워크 분석에 관한 연구", 『형동예스』, 제24호,
1-24.

김용학(2011), 「사회 연결망 분석」, 박영사.

김주혁·권은경(2014), "항만 네트워크 중심성과 효율성간
의 상관관계 분석: 사회 네트워크 분석을 중심으

남호수·남권우·조영수·이정호(2011), "인천항 입·출항
선발행태에 따른 기여도 분석에 관한 연구", 『대

모수원·이광준(2013), "광양항과 인천항의 수출경쟁력 분
석: 항만물류동향 중심으로", 『해양물류연구』, 제
80집, 993-1008.

박적이(2011), "아시아 지역 항만 네트워크 분석을 통한 항
만의 역할 분석: 사회 네트워크 분석 접근법", 부
산외국어대학교 국제통상청정대학원 석사학위논문.

박성일·정현재·전준우·이기태(2012), "System Dynamics
을 활용한 인천항 첨단화물의 동양 해수에 관한 연
구", 『한국항만경제학회지』, 제28집 제2호, 75-
93.

박용선·최기영(2013), "한일 정기선항로의 발달과 항만물
류동량 특성 분석", 『해운물류연구』, 제76집, 53-
81.

박용선(2015), "광양항 해운과 내륙 네트워크 발달에 대한
고찰", 『Journal of Korea Port Economic Asso-
ciation』, 제28집 제3호, 215-234.

송영진(2011), "SNA분석방법의 이론과 응용방안", 중앙대학교 대학원 통계과 통계학전공 석사논문.

임영행(2012), "사회 네트워크 분석 접근법을 이용한 효율적 항만의 영향력과 순위 측정에 관한 연구", 『한국SCM학회지』, 제12집 제1호, 37-47.

이중수(2004), "세계 경기회복 해양의 현황과 선사들의 대응 전략", 『해운물류연구』, 제40집, 197-204.

인천항만공사(2015), "2015 인천항 주요통계", 인천항만공사(2008), 『인천항(The history of incheon port)』

조윤호 방정혜(2009), "신상품 추천을 위한 사회협업방식의 활용", 『지능정보연구』, 제15집 제4호, 183-199.

조인교·이혜화·이형태(2012), "인천항 온도크(On-Dock) 서비스 경쟁력 강화방안에 관한 연구", 『물류학회지』, 제22집 제3호, 217-234.

김현영·정국희(2012), "인천항과 북중국 주요 항만의 커플링 관련 방안에 관한 연구", 『로지스틱스연구』, 제20집 제2호, 37-51.

최성구·김주혜·권오경(2014), "세계 주요 항항의 효율성과 영향력 측정에 관한 연구: DEA와 사회 네트워크 분석을 이용하여", 『로지스틱스연구』, 제22집 제4호, 29-42.

황철·황철·이형태(2012), "중국주요 항항과 인천 및 부산항간의 컨테이너 처리량 변화에 관한 실증분 석", 『물류학회지』, 제22집 제4호, 5-25.

IPUS 인천항 포털(http://www.ipus.co.kr/ipa/ipapt/main.do) 한국무역협회(http://stat.kita.net/stat/kts/port/PortImpExpList_screen#)

Lam, J. S. L., and Yap, W. Y.(2011), "Dynamics of liner shipping network and port connectivity in

Sentinel Visualizer(http://www.fmsasg.com/Social Network Analysis/)
사회연결망 분석을 활용한 컨테이너 정기선 항로 변화 분석

: 인천항을 중심으로

박기현 · 임미순 · 안승범

국문요약

현재 인천항은 국내 컨테이너 처리물동량 3위 항만으로 2013년~2014년 컨테이너 처리 물동량 200만 TEU를 달성하였으며 국내 컨테이너 처리 물동량 2위인 광양항과의 물동량 차이를 좁이며 국내 2위 컨테이너 항만으로 도약하기 위해 노력하고 있다. 또한 지속적인 컨테이너 물동량 증가에 대비하여 2015년 6월 인천 송도에 인천 신항을 개장하여 국내 및 세계 주요 컨테이너항만으로 발전하기 위한 발판을 마련하였다. 이처럼 인천항의 컨테이너 항만으로서의 역할이 커지고 있어 인천항을 기항하고 있는 컨테이너 정기선 항로(항만 네트워크)의 역할과 항후 방향성 설정에 대한 관심이 늘어나고 있다. 본 연구는 인천항을 기항하는 컨테이너 정기선 항로를 중심으로 하는 시계열 자료(2008년~2015년)를 분석하여 인천항 컨테이너 정기선 항로의 변화에 대한 확인 하였으며 이를 통해 남중국/동남아시아 항로의 증가세가 인천항 컨테이너 정기선 항로의 증가에 긍정적 영향을 미쳤다는 점과 2008년도 이후 인천항 컨테이너 정기선 항로의 다양화가 이루어지고 있음을 확인하였다. 그리고 최근 해운 항만 분야에 도입되고 있는 사회연결망분석(Social Network Analysis)을 통해 인천항 컨테이너 정기선 항로상의 중앙성(Centrality) 분석을 시행하였다. 인천항 컨테이너 정기선 항로상에 연결도중 중앙성(degree centrality), 인접 중앙성(closeness centrality), 사이 중앙성(betweenness centrality)이 높은 항만 및 그 변화를 확인하였으며, 이를 통해 국내에는 부산항이 국외에는 홍콩항이 높은 중앙성(Centrality)을 가지는 것으로 나타났다. 이를 통해 인천항의 네트워크상 허브 항만은 세계 컨테이너 물동량 순위(14년 기준) 1위, 2위를 차지하는 상해, 싱가포르가 아닌을 확인하였으며, 또한 중국 동부 항만의 중심성이 상대적으로 낮은 점에서 현재까지 중국 동부 항만이 인천항의 네트워크상 허브 역할을 하지 않고 있음을 확인하였다.

주제어: 인천항, 사회연결망분석(SNA), 정기선 서비스 네트워크, 컨테이너 터미널