DEA와 Malmquist 지수를 활용한 화물자동차운송업체의 효율성 및 생산성 분석에 관한 연구
이영제* · 공정민** · 전준우*** · 여기태****

A DEA and Malmquist Index Approach to Measuring Productivity and Efficiency of Korean Trucking Companies
Young-jae LEE · Jeong-min GONG · Jun-woo JEON · Gi-tae YEO

Abstract

The purpose of this study is to analyze the efficiency and productivity of domestic trucking transportation companies using DEA-CCR, BCC, and Malmquist indexes. Here, we analyze the top 14 domestic trucking transportation companies, based on cargo volume. The number of freight agents, trucks, and assets are used as input variables, and cargo volumes and sales are used as output variables. The efficiency of trucking transportation companies is examined using a DEA approach, and Malmquist indexes are applied to analyze productivity.

According to the DEA results, the efficiency levels of the CCR, BCC, and scales for three companies (DMU 4, 5, and 10) are 1, indicating that these companies are operated efficiently. At the same time, the Malmquist indexes show that all companies have values smaller than 1, except for the period 2012-2013, indicating that their productivity decreased. Furthermore, the TECI indexes were all larger than 1, except for the period 2012-2013, indicating that the companies are efficient. Lastly, all TCI indexes are smaller than 1, except for the period 2012-2013, indicating regressing trends.

Key words: Trucking Companies, parcel service, BCC, CCR, Malmquist

△ 논문접수: 2016. 06. 20. △ 심사완료: 2016. 06. 20. △ 게재확정: 2016. 06. 21.
* 인천대학교 동북아울류대학원 박사과정, 제1저자, ajowam@lycos.co.kr
** 인천대학교 동북아울류대학원 석사과정, 제2저자, jm2218@naver.com
*** 인천대학교 동북아울류대학원 박사과정, 제3저자, jwjeon0329@gmail.com
**** 인천대학교 동북아울류대학원 교수, 교신저자, ktyeo@inu.ac.kr
1. 서론

국내운송의 공로부문은 환경성 및 즉시성, 권리 성 등의 장점으로 인해 철도, 해운, 항공 등의 다
른 화물운송수단에 비해 90.7%의 압도적인 수송분
담률을 차지하고 있다(국토교통연방, 2014). 그 중
화물자동차 운송사업자의 임직책임 하에 화물을
집화·분류·배송하는 형태의 택배는(국토교통부,2012)
전산장비화 시장규모가 매년 증가함에 따라
성장세가 지속되고 있다(통계청, 2015). 이러한 구
준한 취급방식의 증가에도 불구하고 연계 간 경쟁
심화로 운임하락, 마진을 감소, 배송기사의 서비스
수준하락이 이어지고 있다(교통연구원, 2010).

택배는 전국에 화물을 취급하기 위한 화물취급
소와 수·배송하기 위한 차량 및 화물본리시설 등
대규모 인프라가 요구되는 장거리사업이다. 최근에는
고객의 니즈가 늘어나기 따라 운송하고 있는 화물
의 운송정보를 스마트폰 앱이나 메신저, SMS로 제
공하기 위한 IT기반 투자도 요구되고 있다. 또한
화물자동차 운송 사업은 운임하락과 취급량 증가
에 따른 어려움, 물류센터 등 시설에 대한 대규모
투자 및 화물의 배송밀도를 높이기 위한 화물취급
소 모집, 화물자동차의 확보가 요구되지만 이를
만족하기 어려운 실정이다.

이에 국토교통부에서는 택배시장의 증가에 따른
화물자동차의 증가가 요구되자 화물을 집화·분류
·배송하는 형태의 화물자동차운송사업자(이하 ‘택
배화물자동차운송사업자’라 함)에 한하여 국토교통
부에서 정한 운송사업의 공급기준을 통해 2012년,
2014년 제한적으로 증가를 실시하였다.

당시 택배화물자동차 운송사업자의 총적기준은
영업소 수 측면에서는 전국 5개 이상의 시, 도에
 적 30개 이상 운영을 요구하였으며, 화물 분류 시
설 측면에서는 3,000미터 이상 1개소 포함, 전체 3개
소 이상의 운영이 필요하였다. 또한 화물취적 및
영업소 등과 운송네트워크를 관리할 수 있는 전산
망시설을 요구하였으며, 차량은 1.5톤 미만 범형,
담장차량인 사업용 차량 100대 이상이 총중기
준이었다(교통연구원, 2015).

본 연구는 DEA(Data Envelopment Analysis) 방
법론을 이용하여 국토교통부의 공급기준을 총정하
는 17개 택배화물자동차운송사업자 중 총취급
객, 국내 상위 14개 업체의 효율성을 분석하는 것
을 연구의 목적으로 하였다. 이를 통해 국내 택배
업계의 경쟁력을 분석하고 분석결과를 토대로 국
내 화물자동차운송사업의 향후 사업추진에 있어
시사점을 제공하고자 한다.

본 연구의 2장에서는 택배 및 화물자동차 운송
업과 관련된 선행연구를 수행하여 연구의 차별성
을 제시하고, 3장에서는 연구방법론을 설명한다. 4
장에서는 택배화물자동차운송사업자의 효율성 분
석결과를 제시하고, 5장에서는 결론 및 시사점으로
마무리한다.

II. 선행연구

1. DEA분석을 적용한 기존 연구 고찰

국우갑(2015)은 DEA와 Malmquist를 활용하여
육상운송업, 해상운송업 그리고 시설운영업의 생산
성과 효율성을 분석했다. 연구결과 3개 업종의 생
산성 지수가 모두 1보다 낮았고, 육상화물운송업의
효율성이 가장 높은 것으로 나타났다. 박이순, 송
순후(2013)은 42개 종합물류기의 기술적 효율성
을 DEA와 SFA를 이용해 분석했으며, 각각 42.2%
와 50.8%의 낮은 효율성을 기록하였다. 이는 종합
물류기업의 규모 비효율성이 아닌 기술적 부분에
서 효율성이 낮은 것이라고 설명했다. 박차비, 김
태송(2014)은 국내 200여개 물류기업의 적인 수,
자산, 매출액을 활용하여 2002년부터 2012년까지
의 물류산업 전체의 효율성과 업체, 규모별 상대
적 효율성을 연구했다. 분석결과 국제물류분야의

2. 화물자동차운송업에 대한 선형연구 고찰

김태훈(2008)은 고객의 택배업체 선정 시 의사결정에 영향을 미치는 요소에 대해 택배업종자 60명을 대상으로 Fuzzy AHP를 이용하여 분석하였으며 업체 선정 시 신뢰성, 가격, 반응성, 품리성 순으로 고려하는 것으로 나타났다.

표 1. 화물자동차운송업에 대한 국내 선행연구

<table>
<thead>
<tr>
<th>방법</th>
<th>연구자</th>
<th>분석대상</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEA</td>
<td>정병희 (2010)</td>
<td>화물자동차 운송업 30개사</td>
</tr>
<tr>
<td>최종렬 외 (2011)</td>
<td>화물자동차 운송업 42개사</td>
<td></td>
</tr>
<tr>
<td>빈도 - 상관</td>
<td>이재학 (2005)</td>
<td>화물자동차운송업체, 화주 127</td>
</tr>
<tr>
<td>IPA</td>
<td>이재학 (2012)</td>
<td>택배운영업체 47개사, 화주 52</td>
</tr>
<tr>
<td>상관</td>
<td>송장근 (2012)</td>
<td>택배업체 241명</td>
</tr>
<tr>
<td>S,E</td>
<td>김태훈 (2008)</td>
<td>택배업체 60명</td>
</tr>
<tr>
<td>Fuzzy AHP</td>
<td>배임현 (2007)</td>
<td>태화회사, 중업원 162명</td>
</tr>
</tbody>
</table>

선행연구를 종합해보면 화물자동차 운송업의 효율성 분석연구는 활발하게 이루어져지 않았으며, 화물자동차 운송업의 중요한 산출변수인 취급량이 포함되지 않은 것을 알 수 있다. 또한, 전통적인 DEA 모형을 적용한 한계가 존재한다. 본 연구는 화물자동차 운송업계의 취급량을 포함한 효율성 분석과 기존연구에서 부족했던 생산성 분석을 수행하여 화물자동차 운송업체의 발전방안을 제시하는 측면에서 연구의 차별성을 갖는다.

III. 연구 모형

1. CCR - BCC 모형

DEA(Data Envelopment Analysis)는 기업의 효율성을 분석하는 방법으로 투입변수와 산출변수를 활용하여 DMU(Decision Making Unit: 의사결정 단위)의 효율성과 생산성을 분석하는 비모수적 방법이다. 대표적 모형으로서 CCR모형과 BCC모형이 있다. Charnes, Cooper & Rhodes(1978)에 의해 제시된 DEA-CCR 모형은 규모수익불변(Constant Returns to Scale: CRS)을 가정하고, DMU의 투입변수의 가중합계에 대한 산출변수의 가중합계의 비율을 계산한다. CCR모형은 아래 식(1)을 사용하여 계산할 수 있다.

\[
\text{Max } h_0 = \frac{s \sum_{r=1}^{s} u_r y_{r0}}{m \sum_{i=1}^{m} v_i x_{i0}} \tag{1}
\]

\[s.t\]
\[
\sum_{r=1}^{s} u_r y_{rj} \leq 1, \quad j = 1, \ldots, n
\]
\[
\sum_{i=1}^{m} v_i x_{ij} = 1 \quad \text{for } i = 1, \ldots, m
\]

\[u_r \geq \epsilon > 0, \quad r = 1, \ldots, s\]
\[v_i \geq \epsilon > 0, \quad i = 1, \ldots, m\]

위 포형은 DMU 투입물 합계와 산출물 합계의 비율이 1을 초과해서는 안 되는 것을 나타내며, 투입과 산출요소의 가중치가 1보다 크다는 제약조건을 가진다.

BCCM 모형은 Banker, Charnes, & Cooper(1984)에 의해 제시되었으며, 규모의 효율성과 순수 기술 효율성을 구분하지 못하는 CCR의 단점을 보완하기 위해 규모수익변이(Variable Return to Scale: VRS)를 가정한다. 규모효과가 제거된 상태의 정영효율성만을 측정하는 BCC모형은 식(2)와 같다.
$\max h_o = \frac{\sum_{r=1}^{s} u_r y_{r0} + u_0}{\sum_{i=1}^{m} v_i x_{i0}}$ (식 2)

$s.t$

$\sum_{r=1}^{s} u_r y_{rj} + u_0 \leq 1, \ j = 1, \ldots, n$

$\sum_{i=1}^{m} v_i x_{ij} \leq \varepsilon, \ r = 1, \ldots, s$

$u_r \geq \varepsilon > 0, \ r = 1, \ldots, s$

$v_i \geq \varepsilon > 0, \ i = 1, \ldots, m$

CCR모형과 BCC모형은 투입기반(Input-Oriented)과 산출기반(Output-Oriented)모형으로 나뉜다. 투입기반 모형은 투입변수를 기준으로 산출량이 정해진 상태에서 투입량의 최소화 여부를 측정하고, 산출변수는 산출변수를 기준으로 정해진 투입량에 최대의 산출량을 생산하는지를 분석한다. CCR에서 측정한 기술적 효율성은 BCC를 통해 측정된 규모의 효율성과 순수 기술 효율성으로 분류된다. 규모의 효율성을 측정하는 방법은 식(3)과 같다.

규모의 효율성 = $\frac{\theta_{CCR}}{\theta_{BCC}}$ (식 3)

2. Malmquist 지수

$M(X^{t+1}, Y^{t+1}, X^t, Y^t)$

$= \frac{D'_C(X^{t+1}, Y^{t+1})}{D'_C(X^t, Y^t)} \times \frac{D'_C(X^{t+1}, Y^{t+1})}{D'_C(X^t, Y^t)}^{\frac{1}{2}}$

일반적으로 지수의 값이 1보다 클 때 생산성 향상을 의미하며, 1일 때는 정체, 1보다 작을 때 생산성이 하락되었다고 분석한다.

기술적 효율성 변화지수(technical Efficiency Change Index: TECI)는 기술적 효율성의 변화가 생산성 변화에 기여한 정도를 나타내는 지수로 1보다 크면 투입과 산출이 효율적인 것으로 판단한다. 기술적 효율성 변화지수는 내부 요소의 영향을 받아 저자가 증감한다. 기술변화지수(Technical Change Index: TCI)는 기술의 변화가 생산성에 기여한 정도를 나타내며 저자가 1보다 크면 기술의 진보를, 1보다 작으면 기술의 퇴보를 의미한다. 기술변화지수는 외부요소에 의해서 저수에 영향을 받는다.

IV. 화물자동차운송업의 효율성 분석

1. 변수선정 및 기초통계량

기준 효율성 분석연구에서 활용한 투입변수와 산출변수를 고려하고 화물자동차 운송업의 특성을 감안하여 본 연구에서는 투입변수로 화물취급소
표 2. 국내외 연구의 DEA 투입·산출 변수 선정

<table>
<thead>
<tr>
<th>연구자</th>
<th>분석대상</th>
<th>투입변수</th>
<th>산출변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>국수각(2013)</td>
<td>화물운송업, 물류시설운영업 86개사</td>
<td>노동, 자산, 운영비용</td>
<td>매출액, 영업이익</td>
</tr>
<tr>
<td>박이숙 외(2013)</td>
<td>종합물류 기업 43개사</td>
<td>종업원수, 유형자산, 자본</td>
<td>매출액</td>
</tr>
<tr>
<td>박찬희 외(2014)</td>
<td>물류기업 2,147개사</td>
<td>종업원수, 고정자산, 유동자산</td>
<td>매출액</td>
</tr>
<tr>
<td>오승철 외(2013)</td>
<td>종합물류 기업 34개사</td>
<td>자산, 자본, 종업원수</td>
<td>매출액, 영업이익, 당기순이익</td>
</tr>
<tr>
<td>고대경 외(2014)</td>
<td>해운·물류 기업 20개사</td>
<td>인건비, 비유동자산</td>
<td>매출액, 순이익</td>
</tr>
<tr>
<td>최기운 외(2015)</td>
<td>포워딩 업체 15개사</td>
<td>종업원수, 자본금, 영업외비용</td>
<td>매출액, 영업이익</td>
</tr>
<tr>
<td>박일영 외(2015)</td>
<td>부산신항 항만배후지 물류센터 19개사</td>
<td>대지면적, 인건비, 자본금</td>
<td>매출액, 경상이익</td>
</tr>
<tr>
<td>Hamdan 외(2008)</td>
<td>3PL기업 19개사</td>
<td>노동력, 공간, 기술,</td>
<td>처리량, 주문이행, 공간활용</td>
</tr>
<tr>
<td>Rito 외(2011)</td>
<td>항기물 물류업체 12개사</td>
<td>물자취급장비</td>
<td>처리량, 처리물량</td>
</tr>
<tr>
<td>Y. Qin(2012)</td>
<td>중국 항만운영 26개사</td>
<td>운영비용, 자산, 노동</td>
<td>순이익, 영업이익</td>
</tr>
</tbody>
</table>

수, 트럭 수, 자산을 선정했으며, 산출변수로는 취급량과 매출액을 선정했다.

투입변수 중 화물취급소, 트럭 수는 화주에게 운송서비스를 제공하기 위한 접근성, 경쟁성 측면에서 필수적이거나 요소이다. 또한 자산은 이러한 운송성질을 유지, 관리하기 위한 재원 인프라로서 선정하였다. 산출변수로는 상기 투입변수를 이용하여 운송한 실체의 취급량과 그 취급량에 대한 가치를 금액으로 환산한 매출액을 선정하였다. 분석대상은 취급량 기준 화물자동차 운송업체 상위 14개를 선정하였다.

표 3. 측정 투입·산출 변수

<table>
<thead>
<tr>
<th>변수</th>
<th>대상</th>
</tr>
</thead>
<tbody>
<tr>
<td>투입변수</td>
<td>화물취급소 수, 트럭 수, 자산</td>
</tr>
<tr>
<td>산출변수</td>
<td>취급량, 매출액</td>
</tr>
</tbody>
</table>

2. 효율성 분석

본 연구에서는 취급량과 매출액대비 화물취급소수, 트럭수, 자산의 비효율성을 파악하기 위해 투입기반 CCR모형 및 투입기반 BCC 모형을 적용하여 분석을 수행하였다. 상위 14개 화물자동차운송업체의 5년간의 효율성 분석 결과 DMU4, 5, 10 중 3개 업체의 CCR, BCC, SE 지수가 모두 1로 효율적 운영이 이루어지고 있는 것으로 나타났다. 반면 DMU3,7은 5년간의 지수가 0.5이하로 효율성이 낮은 업체로 분석되었다. 2015년 기준으로 CCR의 평균값은 0.61으로 평균 이하의 효율성을 보이지 않았다.
표 4. 화물자동차운송 업 기초통계

<table>
<thead>
<tr>
<th>년도</th>
<th>구분</th>
<th>화물 취급량 (톤)</th>
<th>트럭수</th>
<th>자산 (원)</th>
<th>취급량 (톤)</th>
<th>매출액 (백만원)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>경관</td>
<td>421</td>
<td>2,296</td>
<td>4,654,300,878</td>
<td>92,421</td>
<td>234,026</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>329</td>
<td>2,671</td>
<td>9,849,173,153</td>
<td>113,877</td>
<td>247,288</td>
</tr>
<tr>
<td>2012</td>
<td>경관</td>
<td>428</td>
<td>2,376</td>
<td>4,829,607,122</td>
<td>99,985</td>
<td>250,376</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>333</td>
<td>2,654</td>
<td>10,079,572,695</td>
<td>132,393</td>
<td>282,211</td>
</tr>
<tr>
<td>2013</td>
<td>경관</td>
<td>435</td>
<td>2,410</td>
<td>5,489,960,050</td>
<td>107,235</td>
<td>265,489</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>335</td>
<td>2,680</td>
<td>12,150,793,893</td>
<td>133,876</td>
<td>276,965</td>
</tr>
<tr>
<td>2014</td>
<td>경관</td>
<td>448</td>
<td>3,134</td>
<td>5,363,558,923</td>
<td>129,154</td>
<td>309,188</td>
</tr>
<tr>
<td></td>
<td>표준편차</td>
<td>343</td>
<td>3,485</td>
<td>11,850,941,832</td>
<td>187,080</td>
<td>380,551</td>
</tr>
<tr>
<td>2015</td>
<td>경관</td>
<td>448</td>
<td>3,134</td>
<td>5,363,558,923</td>
<td>129,154</td>
<td>309,188</td>
</tr>
</tbody>
</table>

주: 취급량은 실제화물의 바코드 스캔 개수를 의미함

표 5. 화물자동차운송업 효율성 분석(2011, 2012)

<table>
<thead>
<tr>
<th>DMU</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCR</td>
<td>BCC</td>
</tr>
<tr>
<td>DMU1</td>
<td>0.13</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU2</td>
<td>0.15</td>
<td>0.50</td>
</tr>
<tr>
<td>DMU3</td>
<td>0.11</td>
<td>0.36</td>
</tr>
<tr>
<td>DMU4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU5</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU6</td>
<td>0.56</td>
<td>0.60</td>
</tr>
<tr>
<td>DMU7</td>
<td>0.10</td>
<td>0.30</td>
</tr>
<tr>
<td>DMU8</td>
<td>0.47</td>
<td>0.95</td>
</tr>
<tr>
<td>DMU9</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU10</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU11</td>
<td>0.23</td>
<td>0.61</td>
</tr>
<tr>
<td>DMU12</td>
<td>0.41</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU13</td>
<td>0.29</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU14</td>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>

지는 기업은 8개 기업으로 나타났고, BCC는 총 3개 업체만이 평균 0.88보다 낮은 것으로 분석했다. SE(Scare Effects)는 규모의 효율성을 나타내는 것으로 2015년 평균값인 0.67보다 낮은 수치를 보인 기업은 7개 기업이었다. DMU6의 경우 2011년도부터 2013년도까지 CCR, BCC 지수가 낮고, SE 지수는 0.8 이상의 높은 지수를 보였으나 2015년 CCR 0.91, BCC 1, SE 0.9로 효율성 지수가 향상
표 6. 화물자동차운송업 효율성 분석(2013, 2014)

<table>
<thead>
<tr>
<th>DMU</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCR</td>
<td>BCC</td>
</tr>
<tr>
<td>DMU1</td>
<td>0.13</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU2</td>
<td>0.12</td>
<td>0.41</td>
</tr>
<tr>
<td>DMU3</td>
<td>0.11</td>
<td>0.33</td>
</tr>
<tr>
<td>DMU4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU5</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU6</td>
<td>0.44</td>
<td>0.55</td>
</tr>
<tr>
<td>DMU7</td>
<td>0.11</td>
<td>0.29</td>
</tr>
<tr>
<td>DMU8</td>
<td>0.54</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU9</td>
<td>0.79</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU10</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU11</td>
<td>0.24</td>
<td>0.64</td>
</tr>
<tr>
<td>DMU12</td>
<td>0.43</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU13</td>
<td>0.23</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU14</td>
<td>0.74</td>
<td>1.00</td>
</tr>
</tbody>
</table>

표 7. 화물자동차운송업 효율성 분석(2015)

<table>
<thead>
<tr>
<th>DMU</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CCR</td>
</tr>
<tr>
<td>DMU1</td>
<td>0.20</td>
</tr>
<tr>
<td>DMU2</td>
<td>0.31</td>
</tr>
<tr>
<td>DMU3</td>
<td>0.14</td>
</tr>
<tr>
<td>DMU4</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU5</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU6</td>
<td>0.91</td>
</tr>
<tr>
<td>DMU7</td>
<td>0.21</td>
</tr>
<tr>
<td>DMU8</td>
<td>0.80</td>
</tr>
<tr>
<td>DMU9</td>
<td>0.90</td>
</tr>
<tr>
<td>DMU10</td>
<td>1.00</td>
</tr>
<tr>
<td>DMU11</td>
<td>0.33</td>
</tr>
<tr>
<td>DMU12</td>
<td>0.51</td>
</tr>
<tr>
<td>DMU13</td>
<td>0.28</td>
</tr>
<tr>
<td>DMU14</td>
<td>1.00</td>
</tr>
</tbody>
</table>

3. 벤치마킹 대상 분석결과

DEA분석을 통해 효율성이 낮게 나타난 DMU는 벤치마킹 대상을 확인하여, 중가 혹은 감소시키거나 할 수 있는 전략을 통해 효율성을 향상시킬 수 있다. 아래 표는 두 입지를 BCC 모형에서 각 화물자동차운송업계 벤치마킹 대상과 관련성을 보여준다.

분석결과 DMU3은 DMU1과 DMU10으로서, DMU7은 DMU8, 12, 14를, DMU9는 DMU5, 10, 14를 벤치마킹 대상으로 삼아야 하고 마지막으로 DMU11은 DMU10과 DMU13을 벤치마킹해야 하는 것으로 나타났다.
표 8. 2015년 화물자동차운송업 변칙마킹 대상

<table>
<thead>
<tr>
<th>No</th>
<th>DMU</th>
<th>Score</th>
<th>Reference set (lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMU1</td>
<td>1.00</td>
<td>DMU1 1.00</td>
</tr>
<tr>
<td>2</td>
<td>DMU2</td>
<td>1.00</td>
<td>DMU2 1.00</td>
</tr>
<tr>
<td>3</td>
<td>DMU3</td>
<td>0.49</td>
<td>DMU1 0.15, DMU10 0.85</td>
</tr>
<tr>
<td>4</td>
<td>DMU4</td>
<td>1.00</td>
<td>DMU4 1.00</td>
</tr>
<tr>
<td>5</td>
<td>DMU5</td>
<td>1.00</td>
<td>DMU5 1.00</td>
</tr>
<tr>
<td>6</td>
<td>DMU6</td>
<td>1.00</td>
<td>DMU5 1.00</td>
</tr>
<tr>
<td>7</td>
<td>DMU7</td>
<td>0.36</td>
<td>DMU8 0.10, DMU12 0.74,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DMU14 0.16</td>
</tr>
<tr>
<td>8</td>
<td>DMU8</td>
<td>1.00</td>
<td>DMU8 1.00</td>
</tr>
<tr>
<td>9</td>
<td>DMU9</td>
<td>0.94</td>
<td>DMU5 0.16, DMU10 0.13,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DMU14 0.71</td>
</tr>
<tr>
<td>10</td>
<td>DMU10</td>
<td>1.00</td>
<td>DMU10 1.00</td>
</tr>
<tr>
<td>11</td>
<td>DMU11</td>
<td>0.57</td>
<td>DMU10 0.40, DMU13 0.60</td>
</tr>
<tr>
<td>12</td>
<td>DMU12</td>
<td>1.00</td>
<td>DMU12 1.00</td>
</tr>
<tr>
<td>13</td>
<td>DMU13</td>
<td>1.00</td>
<td>DMU13 1.00</td>
</tr>
<tr>
<td>14</td>
<td>DMU14</td>
<td>1.00</td>
<td>DMU14 1.00</td>
</tr>
</tbody>
</table>

4. 비효율성 분석

2015년도의 BCC 분석을 통해 각 변수들의 비효율성을 측정했다. 분석결과 10개 업체의 효율성으로 운영되고 있었으며, DMU 3, 7, 9, 11 중 4개 업체가 비효율적으로 운영되고 있는 것으로 나타났다. 화물자동차운송 산업의 전반적인 비효율성을 측정하기 위해 각 업체의 비효율성의 평균을 확인한 결과 투입요소인 화물취급수와 트럭 수, 자산을 각각 20.82%, 11.74% 그리고 13.14% 감소시켜야 하며 산출요소인 취급량과 매출액은 각각 19.91%와 0.25% 증가시켜야 하는 것으로 분석했다. 각 업체의 비효율성 저수는 아래 표와 같다.

5. Malmquist 분석결과

MPI가 1보다 크면 생산성이 향상됨을 나타내고, 0은 생산량 변화 없음, 1보다 작으면 생산량의 감소된 것을 의미한다.

아래 그림은 기간별 화물자동차운송업계의 생산성 변화의 추이를 나타낸다.

![그림 1. 생산성 변화 추이](image)

MPI 저수는 2012-2013년도를 제외하고는 모두 1보다 작은 값을 보여 생산성 감소를 보여준다. TECI는 2012-2013년도를 제외하고 저수가 모두 1보다 높아 효율성이 높은 것으로 나타났지만, TCI
는 이와 반대로 2012-2013년도를 제외하고 모두 1보다 작게 나타나 기술이 퇴보된 것으로 분석했다.

표 10은 업체별 MPI지수로 DMU4, 14, 1, 6, 7의 순서로 높게 나타나 생산성이 높은 것으로 나타났고, DMU1과 4를 제외한 상위 업체에 비해 하위 업체들의 생산성이 더 높게 나타났다.

<table>
<thead>
<tr>
<th>표 10. MPI지수</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU</td>
</tr>
<tr>
<td>DMU1</td>
</tr>
<tr>
<td>DMU2</td>
</tr>
<tr>
<td>DMU3</td>
</tr>
<tr>
<td>DMU4</td>
</tr>
<tr>
<td>DMU5</td>
</tr>
<tr>
<td>DMU6</td>
</tr>
<tr>
<td>DMU7</td>
</tr>
<tr>
<td>DMU8</td>
</tr>
<tr>
<td>DMU9</td>
</tr>
<tr>
<td>DMU10</td>
</tr>
<tr>
<td>DMU11</td>
</tr>
<tr>
<td>DMU12</td>
</tr>
<tr>
<td>DMU13</td>
</tr>
<tr>
<td>DMU14</td>
</tr>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

TECI의 평균을 분석한 결과 DMU 4를 제외한 모든 업체가 1보다 작은 값으로 기술이 퇴보하였다. 하지만 DMU4의 경우 2012년-2013년도에 3.016으로 급격한 증가를 했던 것을 제외하면 모두 1보다 작은 값으로 나타나 화물자동차운송업체가 전

<table>
<thead>
<tr>
<th>표 11. TECI 변화</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU</td>
</tr>
<tr>
<td>DMU1</td>
</tr>
<tr>
<td>DMU2</td>
</tr>
<tr>
<td>DMU3</td>
</tr>
<tr>
<td>DMU4</td>
</tr>
<tr>
<td>DMU5</td>
</tr>
<tr>
<td>DMU6</td>
</tr>
<tr>
<td>DMU7</td>
</tr>
<tr>
<td>DMU8</td>
</tr>
<tr>
<td>DMU9</td>
</tr>
<tr>
<td>DMU10</td>
</tr>
<tr>
<td>DMU11</td>
</tr>
<tr>
<td>DMU12</td>
</tr>
<tr>
<td>DMU13</td>
</tr>
<tr>
<td>DMU14</td>
</tr>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>표 12. TECI 변화</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU</td>
</tr>
<tr>
<td>DMU1</td>
</tr>
<tr>
<td>DMU2</td>
</tr>
<tr>
<td>DMU3</td>
</tr>
<tr>
<td>DMU4</td>
</tr>
<tr>
<td>DMU5</td>
</tr>
<tr>
<td>DMU6</td>
</tr>
<tr>
<td>DMU7</td>
</tr>
<tr>
<td>DMU8</td>
</tr>
<tr>
<td>DMU9</td>
</tr>
<tr>
<td>DMU10</td>
</tr>
<tr>
<td>DMU11</td>
</tr>
<tr>
<td>DMU12</td>
</tr>
<tr>
<td>DMU13</td>
</tr>
<tr>
<td>DMU14</td>
</tr>
<tr>
<td>AVERAGE</td>
</tr>
</tbody>
</table>
반적으로 기술적 퇴보가 일어난 것으로 나타났다.

V. 결론

국내 내구화물운송의 90.7%를 차지하는 화물자동차운송업 중 탱배는 전자상거래 시장의 성장과 함께 시장 규모가 지속적으로 증가되고 있다. 이론적 취급량의 증가에도 불구하고 경쟁 심화로 인한 운영하락, 마진감소, 서비스 수준하락 등이 이루어지고 있는 실정이다. 이에 본 연구는 국내 화물자동차운송사업의 향후 사업추진에 있어 시사점을 제공하기 위해 탱배화물자동차운송업 14개 업체의 효율성과 생산성 분석하여 도출하였다.

분석에 사용된 투입변수는 화물취급원소수, 화물자동차수, 자산비, 산출변수는 취급량과 매출액을 선정하였다. 효율성 분석을 위해 CCR과 BCC 모형을 적용했으며, 생산성분석을 위해 Malmquist 지수를 활용했다.

효율성 분석결과, DMU4, 5, 10 총 3개 업체가 CCR, BCC 지수가 5년간 모두 1로 효율적 운영이 이뤄지고 있는 것으로 나타났고, 2015년 기준 CCR 값이 평균보다 낮은 기업은 7개 기업이, BCC 값이 평균보다 낮은 기업은 3개 기업으로 분석되었다. 2015년도 BCC 모형기반 비교효율성분석 결과 DMU3, 7, 9, 11의 비교효율성 지수가 높은 것으로 나타났다.

이러한 효율성 차이는 각 DMU가 취급하는 화물특성 종류와 화주 위치에 따라 달라진다. 의약품을 전문적으로 취급하는 업체의 경우 적은 화물취급을 보유함에도 불구하고 높은 효율성이 측정되었다.

연구대상인 14개 업체가 전국적으로 4,802개의 화물취급소를 가지고 있으며 과당경쟁과 수익성 악화로 일부 업체의 화물자동차는 비효율적으로 운용되고 있다.

Malmquist 분석 결과 산업 전체적으로는 2012-2013년도를 제외한 모든 기간 동안 MPI지수가 1보다 낮아 생산성이 감소된 것으로 분석되었고, 같은 기간 TCI 지수도 1보다 낮아 기술이 퇴보된 것으로 확인되었다. 하지만 TECI 지수는 2012-2013년도를 제외하고 모두 1보다 높게 나타나 기술적으로 효율적 운영이 이뤄지고 있음을 알 수 있었다.

생산성 감소의 이유는 탱배 취급 취급량은 지속적으로 증가함에도 불구하고 과당경쟁으로 인한 화물만큼 하락이 주요 원인이며 특히 주변 탱배취급과 중복은 화주감소와 수익성 하락을 유발하고 있다. 기술적 퇴보는 일부 기업의 경영수지 악화로 M&A, 순이익 감소로 인한 인프라 투자의 축소에 기인한다.

이를 개선하기 위한 방법으로 수익성이 악화된 화물취급소는 탱배와 경합을 해야하거나 공동화물취급소를 설치하여 배송규모를 늘릴 필요가 있다.

탱배화물자동차 운송업은 수·배송 밀도를 높이기 위한 화물취급소를 탱배와 경합을 해야하며 공동화물취급소를 설치하여 배송규모를 늘려야할 필요가 있다.
구중승(2014), "BSC, DEA와 Malquist 생산성 지수를 활용한 우리나라 해운선사의 경쟁력 관리에 관한 연구", "해운물류연구", 제83권 제4호, 579-615.
국무각(2013), "조합제 평균 경제성과 생산성에 관한 실증연구", "물류학회지", 제23권 제1호, 29-49.
이재학, 송영태(2005), "국내 화물자동차운송업의 경쟁우위 결정요인에 관한 실증적 연구", "한국물류학회지", 제15권 제1호, 165-190.
장명희(2010), "DEA를 이용한 국내 화물자동차 운송업의 상대적 효율성분석", "한국콘텐츠학회논문지", 제10권 제12호, 328-341.
최기윤, 윤정호, 이현규, 이만희(2015), "DEA를 활용한 포워딩 업체의 효율성분석에 관한 연구", "한국해운물류학회지", 제86권 제3호, 331-352.
DEA와 Malmquist 지수를 활용한 화물자동차운송업체의 효율성 및 생산성 분석에 관한 연구
이영재 · 공정민 · 전준우 · 여기태

국문요약
본 연구는 DEA-CCR, BCC 그리고 Malmquist 지수를 이용하여 국내 화물자동차운송업체의 효율성과 생산성을 분석하는 것을 연구의 목적으로 하였다. 취급량 기준 국내 상위 14개 화물자동차운송업체를 분석대상으로 하였으며, 부업변수로 화물취급업소 수, 트럭 수, 자산을 이용하였으며, 산출변수로 취급량과 매출액을 수집하였다. 화물자동차운송업체의 효율성 분석을 위해 DEA 모형을 적용했으며, Malmquist 지수를 적용하여 생산성을 분석하였다.

DEA분석 결과 DMU4,5,10 총 3개 업체의 CCR, BCC, 규모의 효율성이 모두 1로 효율적 운영이 이루어지고 있는 것으로 나타났다. 한편 Malmquist 지수분석결과, 2012-2013년도를 제외하고는 모두 1보다 작은 값을 보여 생산성이 감소한 것으로 나타났고, TECI는 2012-2013년도를 제외하고 지수가 모두 1보다 높아 효율성이 높은 것으로 나타났지만, TCI는 반대로 2012-2013년도를 제외하고 모두 1보다 낮은 지수로 기술이 되보된 추세로 분석했다.

주제어: 화물자동차운송업체, 택배, BCC, CCR, Malmquist